High-energy Neutrino Emission from Interaction-powered Supernovae

Tetyana Pitik Niels Bohr Institute & DARK INFN, Università di Perugia

> TEVPA 2023 NAPOLI

September 11, 2023

UNIVERSITY OF COPENHAGEN

CARL§BERG FOUNDATION

H-rich (superluminous) supernovae

High-energy neutrinos from interaction-powered supernovae

This talk is based on: T.Pitik, I.Tamborra, M.Lincetto, A. Franckowiak (MNRAS 524 (2023) 3)

Grand unified neutrino spectrum

Adapted from E.Vitagliano, I.Tamborra, G.Raffelt Rev.Mod.Phys. 92 (2020)

Many candidate sources (steady and transient)

Starburst galaxies

Active Galactic Nuclei

Tidal Disruption Events

Supernovae

γ-ray bursts

Many candidate sources (steady and transient)

Starburst galaxies

Active Galactic Nuclei

Tidal Disruption Events

Supernovae

γ-ray bursts

H-rich (superluminous) supernovae

What is a H-rich (superluminous) supernova?

5000 5500 6000 6500 7000 7500 8000 8500 9000 Rest wavelength (Å)

Power source of superluminous supernovae

Three power source candidates:

Power source of superluminous supernovae

Three power source candidates:

Radioactive ⁵⁶Ni **decay**

$^{56}_{28}$ Ni	\rightarrow	$_{27}^{56}$ Co + e^+	+	ν_e	+	γ
$_{27}^{56}$ Co	\rightarrow	$_{26}^{56}$ Fe + e^+	+	ν_e	+	γ

 $1-10 M_{\odot}$ of ⁵⁶Ni are required to explain the bright peaks

achievable only in pair-instability SNe

several observations are inconsistent with this model. Can only be adopted for few SLSN I

Magnetar spindown Strong CSM interaction

energy input from ms magnetar spindown

good candidate for SLSN I and SLSN II

still missing the smoking gun

energy input from dissipation of ejecta kinetic energy in the dense CSM

> good candidate for SNe and SLSNe IIn

modeling the emission is complicated because of various unknown parameters

Power source of superluminous supernovae

Three power source candidates:

Radioactive ⁵⁶Ni decay

1-10 M_{\odot} of ⁵⁶Ni are required to explain the bright peaks

> achievable only in pair-instability SNe

several observations are inconsistent with this model. Can only be adopted for few SLSN I

Magnetar spindown S

energy input from ms magnetar spindown

good candidate for SLSN I and SLSN II

still missing the smoking gun

Strong CSM interaction

energy input from dissipation of ejecta kinetic energy in the dense CSM

> good candidate for SNe and SLSNe IIn

modeling the emission is complicated because of various unknown parameters High-energy neutrinos from interaction-powered supernovae Physical parameters which determine the observed properties :

- \rightarrow Ejecta mass $\rightarrow M_{ej} \in (1-70) M_{\odot}$
- → Kinetic energy of the ejecta → $E_k \in (10^{50} 10^{53}) \text{ erg}$
- → Structure of the star's envelope and star radius → $R_{\star} = 10^{13}$ cm
- \rightarrow CSM mass \rightarrow $M_{\rm CSM} \in (1-70) M_{\odot}$
- \rightarrow CSM composition \rightarrow solar composition for the CSM
- → CSM radial distribution → constant density and wind-like profile
- \rightarrow CSM geometry \rightarrow spherical with $R_{\rm CSM} \in (5 \times 10^{15} 10^{17}) \, {\rm cm}$

* Not surprising that the class of interacting SNe is so extremely diverse

Lightcurve properties of interest in the study

we want to see if there is a connection between t_{rise} , L_{peak} and the efficiency in producing high-energy neutrinos

Analytical treatment for L_{peak} and t_{rise}

E^{*}_{p,max} dependence on SN parameters

$$\Delta t_{pk} = t |_{E_{p,max}^*} - t_{peak}$$
 = time of maximum $E_{p,max}$ with respect to L_{peak}

tipically $\Delta t_{pk} \gtrsim \mathcal{O}(100 \text{ days})$ for $E_k \lesssim 10^{52} \text{ erg}$, $M_{ej} \lesssim 10 M_{\odot}$, $M_{CSM} \lesssim 20 M_{\odot}$, $R_{CSM} \lesssim \text{few} \times 10^{16} \text{ cm}$

E^{*}_{p,max} dependence on SN parameters

tipically $\Delta t_{pk} \gtrsim \mathcal{O}(100 \text{ days})$ for $E_k \lesssim 10^{52} \text{ erg}$, $M_{ej} \lesssim 10 M_{\odot}$, $M_{CSM} \lesssim 20 M_{\odot}$, $R_{CSM} \lesssim \text{few} \times 10^{16} \text{ cm}$

Neutrino energetics as a function of SN parameters: wind scenario

Neutrino energetics as a function of SN parameters: wind scenario

Two of the brightest SLSNe detected by the ZTF

• $t_{\text{rise}} \in [1, 1.5] \times t_{\text{rise,obs}}$

• $L_{\text{peak}} \ge L_{\text{peak,obs}}$

•
$$E_{\rm k} \ge E_{\rm rad,obs}$$

•
$$t(R_{\rm ph}) - t(R_{\rm bo}) \ge t_{\rm dur,obs}$$

Cumulative number of neutrinos

Expected number of neutrinos as a function of z

 $N_{\nu_{\mu}+\bar{\nu}_{\mu}} \gtrsim 10$ for $d_{\rm L} \lesssim 9$ (13) Mpc for IceCube (IceCube-Gen2)

Follow-up strategy for neutrino searches

The search for neutrinos from a source class is most sensitive when a stacking of all sources is applied

The stacking requires a weighting of the sources relative to each other

1. assumed that all SNe are standard candlesPrevious searches:2. used the optical peak flux as a weight

Our work shows that neither of these methods is justified

Multiwavelength emission can yield a source-by-source prediction

The temporal window can be optimized to reduce the background

Take home message

High-energy neutrinos from interaction-powered SNe

Are efficiently produced in SNe events with:

 $L_{\text{peak}} \gtrsim (10^{43} - 10^{44}) \text{erg s}^{-1} \longrightarrow \frac{\text{necessary but}}{\text{not sufficient}} \longrightarrow \frac{\text{Multiwavelenght}}{\text{observations are crucial}}$

→ The neutrino peak is delayed with respect to the optical peak by O(100 days)

 \rightarrow Point sources can be observable with high significance only for $d_{\rm L} \lesssim 10$ Mpc

In a stacked search, one should use source by source neutrino predictions

A detection would confirm the mechanism powering SNe IIn , and constrain the SNe parameters

