The Pacific Ocean Neutrino Experiment (P-ONE) Development of the first detector line

Andreas Gaertner for the P-ONE Collaboration 11 September 2023

Neutrino Astronomy

- Classical astronomy: photons only
- Multi-messenger astronomy:
 - Cosmic rays
 - Gravitational waves
 - Neutrinos
- Neutrinos are the only particles that travel unperturbed by matter or magnetic fields

Neutrino Telescopes

- Neutrinos interact with matter to produce high-energy charged lepton
- Charged lepton produces Cherenkov light

- Photomultipliers (PMTs) for light detection
- → Large volume of transparent medium (water or ice)

Visualization of a muon track (red) in IceCube. Each dot represents an optical module with a PMT. Image: IceCube Collaboration

Neutrino Telescopes

IceCube (South Pole) Operational

KM3NeT (Mediterranean) P-ONE (Pacific) Partially operational In preparation

Image: IceCube Collaboration

Image: F. Henningsen

Image: KM3NeT

Neutrino Telescopes

Looking up:

 Background from atmospheric muons

Looking down:

- Works for low energies
- At high energies (PeV) earth becomes opaque
- Small band around horizon
- Multiple telescopes are needed across the planet

Plot: L. Schumacher

The Pacific Ocean Neutrino Experiment (P-ONE)

- New neutrino telescope in the Pacific Ocean
- >1 km³ instrumented volume
- Aimed at high neutrino energies (TeV-PeV)

The Pacific Ocean Neutrino Experiment (P-ONE)

- Less scattering in water compared to ice
 - Better angular resolution (0.1 degrees)
- Using existing infrastructure of Ocean Networks Canada
- 2 successful pathfinder missions
- Working on first string of P-ONE

Plot: J.P. Twagirayezu

Ocean Networks Canada (ONC)

- Initiative of the University of Victoria
- Provides power and network connections on the sea floor for scientific instruments
- Over 15 years of experience in deploying and maintaining sea floor infrastructure
- Multiple observatories all over Canada

NEPTUNE Observatory

- 800 km cable loop in the Pacific Ocean
- Cascadia Basin
 - Abyssal plain
 - Low currents (0.1 m/s)
 - Low temperature (2°C)
 - Flat sea floor
 - 2.6 km depth
- ideal environment for neutrino telescope

First pathfinder mission - STRAW

- Measure optical properties of water (optical attenuation, bioluminescence, radioactivity)
- Two 150m strings with four modules each
 - POCAMs: create isotropic light pulses
 - sDOMs: contain 2 PMTs each, detect
 POCAM pulses and background light

Deployed 2018, recovered 2023

First pathfinder mission - STRAW

- Measure optical properties of water (optical attenuation, bioluminescence, radioactivity)
- Two 150m strings with four modules each
 - POCAMs: create isotropic light pulses
 - sDOMs: contain 2 PMTs each, detect
 POCAM pulses and background light

Second pathfinder mission - STRAW-b

- Complement STRAW measurements
- Single 500 m string with 10 modules
 - Spectrometers
 - LiDARs
 - Cameras
 - ...
- Proof of principle for long string

Deployed 2020, recovered 2023

Results presented at TeVPa by Ruohan Li https://agenda.infn.it/event/33457/contributions/204775

Pathfinder missions - Deployment

Current work: First P-ONE string

- 20 modules on 1km string
- First of 6-7 financed strings (P-ONE Demonstrator)

- Proof of concept, no relevant physical measurements with only one string
- Collect background data
- Atmospheric muons
- Test time synchronisation, triggering, ...

Planned deployment: 2024/2025

P-ONE Optical Module (P-OM)

- Multi-PMT module based on KM3NeT OM and IceCube mDOM
- 16 PMTs per module (3" Hamamatsu R14374)
 - measure direction of incident light
- Spring-loaded mounting structure
- Gel pads with reflectors to increase light yield
- Individually adjustable HV

P-OM Electronics

- PMTs read out by 210 MHz 12-bit ADC + FPGA
 - ➔ Full waveform digitization
- Microprocessor, 4GB shared memory with FPGA
 - ➔ Local data buffering, coincidence triggering, communication

Cable and deployment

- 1km/20=50m segments
 - Module serves as breakout box
 - ➔ No connectors
- Cable serves as mechanical backbone
 - ➔ Reduced cable shadow
 - Designed for easy deployment (bottom-up)

Calibration and timing

- Calibration modules replacing 4 PMTs with hollow PTFE diffuser and flasher matrix producing nanosecond pulses
 - ➔ Monitor water properties
 - ➔ Triangulate module positions
- Cameras in calibration modules
 - ➔ Bioluminescence/biofouling
- Piezo receivers in all modules, acoustic beacons on sea floor
 - Triangulate module positions (backup to optical triangulation)
- Network: GbE inside TRBnet
 - Sub-ns timing accuracy

18

Next step: P-ONE Demonstrator

- 6-7 strings of first 10-string cluster
- Funding secured from European agencies, positive messages from Canadian agencies
- First physics measurements
 - Atmospheric neutrinos
 - Moon shadow
 - Bioluminescence study
 - Trigger algorithm development

Deployment over next three years

The full detector

- 7 clusters of 10 strings
- >1 km³ instrumented volume
- Built over several years
- First neutrino telescope in the Pacific

Long term goal: planetary neutrino network, using data from all neutrino telescopes

Plot: L. Schumacher

Further reading

M. Agostini et al., Nat. Astron. 4, p913-915 (2020), arXiv:2005.09493

M. Boehmer et al., JINST 14 (2019) 02, P02013, arxiv:1810.13265

N. Bailly et al., Eur. Phys. J. C (2021) 81: 1071, arxiv:2108.04961

www.pacific-neutrino.org

P-ONE collaboration meeting, Spring 2023

Backup - Cable and deployment

Mooring junction box

Simulations of string tilt in the current

Backup – Bioluminescence

Bioluminescence

- 10kHz Mhz background
- Spikes of a few seconds
- Varies with tides and seasons
- Need appropriate coincidence trigger

Paper on bioluminescence forthcoming

Picture of bioluminescent organism from STRAW-b camera, 60s exposure time

Backup – Bioluminescence

N. Bailly et al., Eur. Phys. J. C (2021) 81: 1071, arxiv:2108.04961

Backup – Bioluminescence

N. Bailly et al., Eur. Phys. J. C (2021) 81: 1071, arxiv:2108.04961

Backup – Attenuation length

Backup – Attenuation length

Attenuation length

- Determines P-ONE module spacing and energy resolution
- Measured at 28m for 450nm
- Site is suitable for neutrino telescope

N. Bailly et al., Eur. Phys. J. C (2021) 81: 1071, arxiv:2108.04961

Backup - Neutrino spectrum

10⁻⁶

10⁻³

10⁰

10³

10⁶

Energy E [eV]

10⁹

10¹²

10¹⁵

10¹⁸

28

Backup - K40

Potassium-40 decays

- Source of coincident photons
- K-40 measurements agree with predictions

N. Bailly et al., Eur. Phys. J. C (2021) 81: 1071, arxiv:2108.04961

