Searching for high-energy neutrino emission from hard X-ray AGN with IceCube

Sreetama Goswami, **Jimmy DeLaunay**, Marcos Santander On Behalf of the IceCube Collaboration

> TeVPA 2023 Napoli, Italy Sept 14th 2023

High-Energy Neutrinos from AGN

- Long-time candidate for hadronic acceleration and high-energy neutrinos
- Extremely luminous and large magnetic fields
- Evidence of neutrino emission from
 - Blazar TXS 0506 <u>The IceCube</u> <u>Collaboration et al. Science (2018)</u>
 - Seyfert NGC 1068 <u>R. Abbasi et al.</u>
 <u>Science (2022)</u>

High-Energy Neutrino Production

Why Hard X-rays?

Hard X-rays let us peer into the core

Models of hadronic acceleration in corona

- Diffusive shock acceleration (Inoue et al. 2019)
- Stochastic acceleration (Murase et al. 2020, Kheirandish et al 2021)

Corona emission peaks in hard X-rays

Credit: ESA/Hubble L. Calçada (ESO)

BAT AGN Spectroscopic Survey (BASS)

- AGN detected by Swift-BAT in 70 month survey
 - Most complete hard X-ray (15-195 keV) survey of the sky
 - 838 AGN
- Additional optical and X-ray observations
- X-ray spectral modelling and classification
- See more about BASS here

IceCube Data

- Through-going tracks
- Full sky
- 12 years of data
- Background dominated
- Same selection criteria used in <u>10</u> <u>year analysis</u> that observed NGC 1068 at 2.9σ
 - +2 years of data
 - updated calibration

Analysis I - Stacking

Unbinned likelihood
 analysis

Column

- Stacked and weighted by intrinsic flux 14-195 keV
- Testing 7 different subsets

density class	$\log N_{\rm H}$ in cm ²
Unobscured	< 22
Obscured	22 - 24
Compton thick	> 24

Analysis II - Single Sources

- Perform single source analyses on most optimistic sources, search for hottest source
- Select sources within factor of 10 of max "effective weight"

 $Effective weight = \frac{Intrinsic hard X-ray flux in the 14-195 keV range}{Sensitivity flux at the source declination}$

- 43 sources
- Includes NGC 1068 (ignore in test)
- NGC 4151 highest weight

Results I - Stacking

- Nothing significant found in all 7 tests.
- Upper limits corrected for completeness
- Can not rule out diffuse flux from all AGN / non-blazars

Results II - Single Sources

Source	ns	Neutrino flux @ 1 TeV (GeV ⁻¹ cm ⁻² s ⁻¹)	Ŷ
NGC 1068	81.7	4.02 ×10 ⁻¹⁴	3.10
NGC 4151	49.8	1.51×10 ⁻¹⁴	2.83

- NGC 1068 most significant source (but ignored for test)
 - Results consistent with other analyses
- Excess at NGC 4151 observed at 2.9σ post-trials

Similar sources

- Both Seyferts
- BH mass both ~10⁷ M_{\odot} (Caroline A. Roberts et al 2021, C. M. Violette Impellizzeri et al 2019)
- Distances: NGC 1068 ~ 11 Mpc, NGC 4151 ~ 14 Mpc (Tikhonov, N. A et al. 2021)

Similar soft flux

- Both well above gamma-ray flux (extrapolated from GeV energies)

Conclusions / Summary

- Nothing significant observed in stacking analysis
 - Not able to rule out AGN as major source of diffuse flux
 - Assuming power-law index = 2.5, Blazars contribute at most 7% of diffuse flux
- If excess is actually from NGC 4151
 - Second excess from Seyfert
 - Similar soft flux as seen from NGC 1068
 - Two of the brightest and closest Seyferts
 - May be an emerging population
 - Difficult to reproduce the harder diffuse flux with these soft sources
- Two excesses observed but nothing significant in stacking, hints that correlation between neutrino and hard X-ray flux may not be so simple

Backups

Analysis I - Stacking

- -

$$\log \mathcal{L} = \sum_{i}^{N} \log \left(\frac{n_{s}}{N} \cdot S(\delta_{i}, \alpha_{i}, \sigma_{i}, E_{i}; \gamma) + (1 - \frac{n_{s}}{N})B(\delta_{i}, E_{i}) \right)$$

$$S(\delta_{i}, \alpha_{i}, \sigma_{i}, E_{i}; \gamma) \longrightarrow S(\delta_{i}, \alpha_{i}, \sigma_{i}, E_{i}; \gamma) = \frac{\sum_{k}^{M} w_{k} S_{k}(\delta_{i}, \alpha_{i}, \sigma_{i}, E_{i}; \gamma)}{\sum_{k}^{M} w_{k}}$$

$$w_{k} = w_{k}^{\text{model}} A(\delta_{k})$$
Detector Acceptance at the declination of source k
Weight for the kth source

Full Stacking Results

Source Type	Weights used	ns	Neutrino flux @ 1 TeV (GeV ⁻¹ cm ⁻² s ⁻¹)	γ	Pre-trial p-value
All sources	Equal weights	0	0	0	1.0 (0.0 σ)
All sources	Hard X-ray flux	161	1.16×10 ⁻¹³	2.89	0.01 (2.2σ)
Blazars	Hard X-ray flux	10	8.80×10 ⁻¹⁶	2.04	0.14 (1.1σ)
Non-blazars	Hard X-ray flux	180	1.47×10 ⁻¹³	3.02	0.01 (2.4σ)
Compton-thick	Hard X-ray flux	45	5.90×10 ⁻¹⁴	3.14	0.12 (1.2σ)
Obscured	Hard X-ray flux	148	1.06×10 ⁻¹³	2.91	0.003 (2.7σ)
Unobscured	Hard X-ray flux	0	0	0	1.0 (0.0σ)

Catalog Completeness

- Selected AGN form a subset of all AGN in observable universe → Need to account for undetected AGN.
- Scale the resultant flux to evaluate contribution from entire source population.
- Hypothesis: neutrino flux \propto intrinsic X-ray flux \rightarrow Adjusted for redshifted energy.
- Find total flux from whole source population by integrating luminosity function.

Effective Completeness = $\frac{\text{Expected } \nu \text{ flux from catalog sources}}{\text{Expected } \nu \text{ flux from whole source population}}$

Population	Effective Completeness (E ⁻²)	Effective Completeness (E ⁻³)
All AGN (flux weights)	2.42%	4.01%
Non-blazar AGN (flux weights)	2.3%	3.86%
Blazars (flux weights)	11.52%	17.97%
Unobscured (flux weights)	5.05%	8.06%
Obscured (flux weights)	2.26%	3.78%
Compton Thick (flux weights)	1.52%	2.59%

Luminosity function :

- Non-blazar AGN from
 <u>Yoshihiro Ueda et al 2014</u>
- Blazars from

L. Marcotulli et al 2022

 $S(\gamma) = F_{Int} * (1+z)^{-\gamma}$