

Inelasticity studies using TeV-scale starting track neutrino events in IceCube

Marjon Moulai for the IceCube Collaboration University of Wisconsin, Madison September 14, 2023

> Photo credit: Yuya Makino, IceCube/NSF

Deep Inelastic Scattering (DIS) and inelasticity

- Above 100 GeV neutrinos primarily interact via DIS
- Inelasticity (y) is an important kinematic variable:

$$y = \frac{E_{\text{Had.}}}{E_{\nu}} = 1 - \frac{E_{\mu}}{E_{\nu}}$$

- Inelasticity enables a suite of possible studies:
 - Measure inelasticity itself
 - Measure $v/_{\overline{v}}$ ratio
 - Search for neutrino-induced charm production
 - Measure astrophysical flavor composition
 - Search for BSM particles

ν_{μ}^{CC} Starting Event in IceCube

Starting events allow reconstruction of hadronic and leptonic energies, separately

- Reconstruct neutrino energy
- Reconstruct inelasticity

Inelasticity predictions for neutrinos and antineutrinos

- Inelasticity predictions shown assuming Cooper-Sarkar Mertsch Sarkare (CSMS) calculation [1]
 - CSMS is a standard DIS calculation
- IceCube cannot distinguish between neutrinos and antineutrinos on an event-by-event basis
- Must perform a flux-averaged measurement \rightarrow informs about neutrino-antineutrino ratio

Previous Work in IceCube

New sample has 4x statistics of previous high-energy sample

Phys. Rev. D 99, 032004 (2019)

5

10.3-year Enhanced Starting Track Event Selection (ESTES)

Energy reconstruction performance

- Reconstruct hadronic cascade and muon track energies with Random Forest
- $E_{\nu} \equiv E_{\mu} + E_{cascade}$
- $\log_{10}(E_{\nu}/\text{GeV})$ RMS error: 0.24

Visible inelasticity reconstruction performance

- Reconstruct hadronic cascade and muon track energies *deposited* within detector (E_{dep}) with Random Forest
- Visible inelasticity: $y_{vis} \equiv E_{dep}^{cascade} / E_{dep}^{total}$
- y_{vis} RMS error: 0.19

Marjon Moulai

 y_{vis}^{reco}

years

10.3

Events in

10.3 years

Events in

2000

1750

1500

1000

 y_{vis}^{reco}

 $y_{vis} \equiv E_{dep}^{cascade} / E_{dep}^{total}$

9

A useful parametrization of inelasticity

- Inelasticity distribution can be parametrized [1]:
 - $\frac{dp}{dy} = N(1 + \epsilon(1 y)^2)y^{\lambda 1}$ • $N = \frac{\lambda(\lambda + 1)(\lambda + 2)}{2\epsilon + (\lambda + 1)(\lambda + 2)}$ • $\epsilon = -\frac{(\lambda + 2)(\lambda + 3)}{2}\frac{\langle y \rangle(\lambda + 1) - \lambda}{\langle y \rangle(\lambda + 3) - \lambda}$
- Fit for $\langle y \rangle$, with λ as a nuisance parameter, and compare to prediction
- Fit for parameters in each energy bin

Inelasticity measurement analysis

- Likelihood-based fit for $\langle y \rangle$ and λ from inelasticity parametrization in bins of E_{ν}^{reco}
- Systematic uncertainties:
 - Astrophysical flux (normalization & spectral index)
 - Conventional atmospheric flux normalization
 - Prompt atmospheric flux normalization
 - Atmospheric muon normalization
 - Cosmic ray model
 - Hadronic interaction model
 - Neutrino self-veto effect
 - Neutrino-antineutrino ratio
 - DOM efficiency
 - Light scattering and absorption in bulk ice
 - Hole ice

Preliminary Asimov sensitivity: $\log_{10}(E_{\nu}/\text{GeV}) = [4.0, 4.5)$

Neutrino flavor composition

years

10.3

Events in

*Y*_{vis}

*Y*_{vis}

 $y_{vis} \equiv E_{dep}^{cascade} / E_{dep}^{total}$

Neutrino-induced charm production

Charm production fraction

Y^{reco}vis

 $y_{vis} \equiv E_{dep}^{cascade} / E_{dep}^{total}$

- CC DIS interactions with strange quarks will ٠ produce charm quarks
 - D^{\pm} , D^{0} , \overline{D}^{0} , D^{\pm}_{s} , Λ^{+}_{c}
- Charm production has not been definitively • observed at IceCube energies \rightarrow Test SM
- Inform about strange sea of nucleon •
- Charm production fraction Strange quarks have a smaller mean Bjorken-x than other light quarks
- These events tend to have higher inelasticity •

 $xy = Q^2/(2M_N E_y)$

Previous IceCube result: Zero charm production excluded at 91% CL [Phys. Rev. D 99, 032004 (2019)]

*Y*_{vis}

Takeaway

- Starting v_{μ} charged current events allow for a suite of astro/particle physics measurements involving inelasticity
 - Inelasticity
 - Flavor composition
 - Neutrino-induced charm production
 - Neutrino-to-antineutrino ratio
- Complete sensitivities are forthcoming

Thank you! Questions?

Back-up

Photo credit: John Hardin, IceCube/NSF

Starting track sample purity

Enhanced Starting Track Event Selection

- 1. Cut events based on probability of light in veto region
- 2. Cut events based on BDT with 13 variables

Random Forest Energy Estimation

- Inputs:
 - 1% quartiles of total energy
 - Distance along track at 1% quantiles of total energy
 - Reconstructed azimuth and zenith
- Reconstruct cascade and muon energies individually

20

Neutrino-induced charm production

- CC DIS interactions with strange quarks will produce charm quarks
 - D^{\pm} , D^{0} , \overline{D}^{0} , D_{s}^{\pm} , Λ_{c}^{+}
- Charm production has not been definitively observed at IceCube energies \rightarrow Test SM
- Inform about strange sea of nucleon

Adapted from G. Binder, "Neutrino-Induced Charm Production in IceCube" Technical Note

Neutrino-induced charm production

- Strange quarks have a smaller mean Bjorken-x than other light quarks
- These events tend to have higher inelasticity

 $xy=Q^2/(2M_N E_\nu)$

22

Previous Work in IceCube

- 5-year inelasticity analysis
 - $R_{CC,charm} = 0.93^{+0.73}_{-0.59}$
 - Zero charm production excluded at 91% CL

https://arxiv.org/pdf/1808.07629.pdf

