A combined Flavor composition measurement of astrophysical neutrinos using multi-sample IceCube data

Neha Lad^{1,2} for the IceCube Collaboration

¹DESY Zeuthen, ²Humboldt – Universitaet zu Berlin <u>PoS-ICRC2023-1122</u>

TeVPA 2023 Napoli, Italy 11-15 Sept, 2023

> RESEARCH FOR BRAND CHALLENGES

Motivation

Flavor Composition Measurement of Diffuse Astrophysical Neutrinos

- Understanding neutrino production at high energy sources through flavor measurements
- Standard 3-flavor oscillations yield nonzero u_{τ} fraction

M. G. Aartsen et al 2015 ApJ 809 98

Motivation

What is Flavor Composition Measurement of Diffuse Astrophysical Neutrinos?

	At the Source $\nu_e : \nu_\mu : \nu_\tau$	At large distance (eg: Earth)
Pion-production scenario	1:2:0	0.30:0.36:0.34
Muon-damped scenario	0:1:0	0.17:0.45:0.37
Neutron-beam scenario	1:0:0	0.55 : 0.17 : 0.28
Charm-production scenario	1:1:0	0.36 : 0.31 : 0.33
See Astropart.Phys.34:205-224,2010 for more detai	Is	
Neutrino Oscillations Particle Identificatio	n to tag all fl	avors is hecessar

Event Signatures in IceCube

DESY. Multi-Sample Flavor Composition measurement of Astrophysical Neutrinos in IceCube | N. Lad | TeVPA 2023

Event Signatures in IceCube

ν_{τ} -CC Double Bang Events

- Challenging to detect
- Low expectation rate (highly depends on spectral features)
- Detection methods in IceCube: Double Cascades (likelihood-based reconstruction) and Double Pulse (CNN search for double pulse structure in IceCube DOMs)
- The event must be fully contained in the detector

Event Signatures in IceCube

ν_{τ} -CC Double Bang Events

- Challenging to detect
- Low expectation rate (highly depends on spectral features)
- Detection methods in IceCube: Double Cascades (likelihood-based reconstruction)* and Double Pulse (CNN search for double pulse structure in IceCube DOMs)
- The event must be fully contained in the detector
- *Used in HESE-7.5 1 to find 2 Double Cascade candidates 2

¹PRD 104,²EPJ 82, 11

Analysis Concept - HESE - 12, what is new?

 Extend HESE (High Energy Starting Event) sample for ~4 years

Speaking of HESE, What is it?

All Sky, All Flavor selection, high astrophysical Purity (Total Deposited Energy above 60TeV)

Analysis Concept - HESE - 12, what is new?

- Extend HESE (High Energy Starting Event) sample for ~4 years
- All flavor neutrino Monte Carlo simulations
- Detector response modeled using the SnowStorm $\ensuremath{\mathsf{approach}}^1$
- Reconstructed Observables for PDFs:
 - Cascades and Tracks: Total Energy, Zenith angle
 - Double Cascades: Total Energy, Length, Energy Asymmetry*

*The energy asymmetry is a measure of how the relative amount of deposited energy in each cascade is distributed ¹JCAP10 (2019) 048

Flavor Composition Measurement

HESE-12 sensitivity

- Fit independent flavor normalizations
- Binned likelihood to perform a forward folding fit
- Asimov sensitivity assumes astrophysical neutrino spectrum* following a single power law (SPL) with, $\gamma_{astro} = 2.37$ and $\Phi_{@100TeV}^{\nu+\bar{\nu}} = 4.32$

*BestFit SPL from ¹ApJ 928, 50,

Flavor Composition Measurement

HESE-12 sensitivity

- Fit independent flavor normalizations
- Binned likelihood to perform a forward folding fit
- Asimov sensitivity assumes astrophysical neutrino spectrum* following a single power law (SPL) with, $\gamma_{astro} = 2.37$ and $\Phi_{@100TeV}^{\nu + \bar{\nu}} = 4.32$

Can the contours shrink even more?

*BestFit SPL from ¹ApJ 928, 50,

Combined Flavor Composition Measurement

Analysis Concept - Combined Fit (aka GlobalFit)

- Answer : YES! Combined Fit of multiple samples!
- Combine HESE-12 sample with IceCube GlobalFit¹
 containing Cascades and Tracks
- No dedicated ν_{τ} identifier yet in GlobalFit
- De-Correlate samples in case of overlaps
- Consistent treatment of all nuisance parameters
 (atmospheric neutrino spectra, detector responses etc)

¹PoS ICRC2023 1064

Combined Flavor Composition Measurement

Sensitivity for a Combined Flavor Fit

- Answer : YES! Combined Fit of multiple samples!
- Combine HESE-12 sample with IceCube GlobalFit¹
 containing Cascades and Tracks
- No dedicated ν_{τ} identifier yet in GlobalFit
- De-Correlate samples in case of overlaps
- Consistent treatment of all nuisance parameters (atmospheric neutrino spectra, detector responses etc)

¹PoS ICRC2023 1064

Combined Flavor Composition Measurement

Results will be out soon!

- Unblinded HESE data
- · Post-unblinding checks are in the process
- Cascades + Tracks (GlobalFit) already unblinded¹
- Stay tuned for exciting new results!

¹for more details PoS ICRC2023 1064

Summary and Outlook

- Measurement of Flavor ratio of diffuse astrophysical neutrinos
- Revisit the HESE sample, an all-flavor, all-sky, astrophysically pure sample, with 12 years of data,
- Combine HESE with through-going tracks and Cascade sample, to perform a flavor GlobalFit
- Combining sample —> Significant gain in sensitivity
- HESE data unblinded, stay tuned for new results!

Back Up

Analysis Concept - Double Cascade PDFs (Total Energy vs Length)

Signal - Double Cascades from $u_{ au}$

Background - Double Cascades from $\nu_{\rm e}$, ν_{μ} and (sneaky) atmospheric neutrinos

DESY. Multi-Sample Flavor Composition measurement of Astrophysical Neutrinos in IceCube | N. Lad | TeVPA 2023

Analysis Concept - Double Cascade PDFs (Energy Asymmetry)

- The Energy Asymmetry (E_A) is a measure of how the relative amount of deposited energy in each cascade is distributed
- It is defined as,

 $\mathbf{E}_A = \frac{\mathbf{E}_1 - \mathbf{E}_2}{\mathbf{E}_1 + \mathbf{E}_2}$

• It is a good estimator to separate single cascades from double cascades

Contact

Deutsches Elektronen-Neha LadSynchrotron DESYneha.lad@desy.de

www.desy.de