High-energy diffuse emission from the Milky Way, a new multi-messenger perspective

Antonio Marinelli (Università Federico II, INFN Napoli, INAF OAC)

In collaboration with: R.Bozza, P.DeLaTorre, C. Evoli, D.Gaggero, D.Grasso

15/09/2023

ARCHIVIO DI STATO DI NAPOLI

Gamma-ray emission from the Milky Way

Galactic diffuse gamma-ray emission

 $e + N \rightarrow e' + \gamma + N'$

Bremsstrahlung emission follows the ISM gas distribution

 $p + p \rightarrow \pi_0 \pi_+ \pi_ \pi^+ \to \mu^+ + \nu_\mu$ $\mu^+ \rightarrow \bar{\nu}_{\mu} + \nu_e + e^+$

Diffuse emission totally correlated with the <u>propagation of cosmic rays</u> <u>d</u>ominated by protons and He. Hadronic emission follows ISM gas distribution as well.

 $e + \gamma \rightarrow e^{'} + \gamma^{'}$

IC emission depends on the energy density of the ISRFs

High energy emission from Milky Way: a new piece of diffuse flux puzzle : VHE ν

Even if in gamma-ray (>1GeV) the Milky Way is the most prominent feature in the sky, in neutrino we reach a first observation (>4 σ) only few months ago

A total of 59592 cascade-like events with an energy above 500 GeV has been used to search for a signal with a spatial and energetic distribution similar to the reference templates:

 $\Pi_0 \rightarrow$ A Fermi-LAT coll. template based on a homogeneous diffusion coefficient along the Milky Way longitude and a 2012 molecular gas map.

KRA- γ_5 and KRA- $\gamma_50 \rightarrow$ A template obtained with DRAGON and Gamma-sky codes based on a inhomogeneous diffusion coefficient and a CR spectral hardening toward the Milky Way center (radial dependent) and two different CR cutoffs at 5 and 50 PeV

IceCube observation of Galactic neutrinos

Diffuse Galactic plane analyses	Flux sensitivity Φ	p-value	Best-fitting flux Φ	
π^0	5.98	$1.26 \times 10^{-6} (4.71\sigma)$	$21.8^{+5.3}_{-4.9}$	
$\mathrm{KRA}_{\gamma}^{5}$	0.16×MF	$6.13 \times 10^{-6} (4.37\sigma)$	$0.55^{+0.18}_{-0.15} \times MF$ —	
$\mathrm{KRA}_{\gamma}^{50}$	0.11×MF	$3.72 \times 10^{-5} (3.96\sigma)$	$0.37^{+0.13}_{-0.11} \times MF$	

Considering the obtained best fit normalizations seems the more motivated case.

Galactic gamma-ray diffuse emission Hardening towards the centre

Progressive hardening of the gamma-ray diffuse spectrum towards the centre

Diffuse gamma-ray spectrum essentially follows the spectrum of CR protons:

Purely diffusive – $\phi \propto E^{-(\alpha + \delta)}$ Advection dominated – $\phi \propto E^{-\alpha}$ The conventional picture of spatiallyconstant diffusion is not able to explain the data consistently

Inhomogenous diffusion model

10²

Energy [GeV]

Updating the KRA- γ models - new version

Considering unresolved source contribution

Depending on the model, the HGPS sample accounts for (68–87)% of the emission of the population in the scanned region. This suggests that unresolved sources represent a critical component of the diffuse emission measurable in the HGPS. This extra component is taken into account to tune the Min and Max diffuse models. <u>Unresolved source component strongly dependent from the energy considered and from the experiment used.</u>

A better look to the IceCube results

The best fit normalization of the π_0 model (4 times the expected value) strongly disagree with the Galactic diffuse Fermi-LAT observations.

A better look to the IceCube results

IceCube analysis with starting tracks 2008-2018

Starting track events IceCube analysis compatible with Cascade analysis, however any significant excess visible, KRA- γ with 50 PeV cutoff quite constrained.

ν expectations from the new KRA- γ models

The updated KRA-gammas remain consistent with the previous KRA-gamma with CR cutoff at 5 PeV.

ν expectations from the updated KRA-gamma

The expected new full sky ν SED in comparison with IceCube

The agreement between the π_0 neutrino best fit and the new expectations from MIN and MAX models certify that the Fermi-LAT spatial template can agree with diffuse γ -ray and ν observations only if an hardening of the CR toward the Galactic center is assumed ($D \propto E^{\delta(R)}$).

Template fitting of the new KRA- γ with ANTARES

The good acceptance of ANTARES experiment for the central part of our Galaxy, makes is answer a crucial probe of the neutrino flux arriving for this region of the sky.

Template fitting of the new KRA- γ with ANTARES

The updated KRA-gamma template cannot be constrained at the moment with the ANTARES data. However the analysis show already hints of a preference for the a template with a hardening of CR toward the center of the Galaxy respect to a homogeneous CR transport assumption (CRINGE)

> Higher significance for KRA-γ with CR cutoff at 5 PeV

Model	r ^{fit}	μ_s^{fit} (tr/sh)	TS	pre-trial p-value	post-trial p-value	UL90(r)
KRA_{γ}^{max}	$0.58^{+0.55}_{-0.48}$	9.6/6.7	0.77	$9.80 \cdot 10^{-2} (1.65\sigma)$	$1.19 \cdot 10^{-1} (1.56\sigma)$	1.35
KRA_{γ}^{min}	$0.59^{+0.57}_{-0.50}$	9.3/7.2	0.73	$1.06 \cdot 10^{-1} (1.62\sigma)$	$1.30 \cdot 10^{-1} (1.51\sigma)$	1.45
KRA_{γ}^{5}	$0.93^{+0.81}_{-0.70}$	10.2/6.8	0.95	$7.40 \cdot 10^{-2} (1.79\sigma)$	$8.92 \cdot 10^{-2} (1.70\sigma)$	1.99
CRINGE+Unresolved	$1.08^{+1.18}_{-1.07}$	11.6/8.4	0.50	$1.47 \cdot 10^{-1} (1.45\sigma)$	$1.79 \cdot 10^{-1} (1.34\sigma)$	2.64
CRINGE	$1.58^{+2.46}_{-1.58}$	8.5/6.8	0.24	$2.35 \cdot 10^{-1} (1.19\sigma)$	$2.74 \cdot 10^{-1} (1.09\sigma)$	4.57

The central molecular zone

The Central Molecular Zone will be the Gold region to test the cosmic-ray sea physics through neutrinos, already done in the past with HE (Fermi_LAT) and VHE gamma rays (HESS) (Gaggero et al. PRL 2017)

The region where more gas is concentrated and where the spectral assumptions of different models have the large discrepancy.

Search for ν in the central molecular zone

IceCube coll. data release 2021

Looking to the last release of track-like events collected by IceCube between 2008 and 2018, through-going tracks, primarily due to muon neutrino candidates, that reach the detector from all directions, as well as neutrino track events that start within the instrumented volume

24 through-going track potentially correlated with the CMZ ν emission

Search for ν in the central molecular zone

We report the expected CMZ diffuse emission (KRA-gamma models and Base models) in comparison with extrapolated spectral points from the 2008-2018 IceCube track-like sample

If this would be the case KRA-gamma models will still leave a room for: Sag A^{\star} , HESS 1745 290, young stellar clusters, gas overdensity effects from Sag A,B,C,D and presence of Dark Matter

Search for possible known Galactic ν sources

Possible unresolved Galactic ν sources

As showed in this work the actual ν telescopes and the incoming ones have a limited capabilities to resolve the known neutrino point-like populations, pointing to a possible additional quasi diffuse ν flux. However we don't know the amount hadronic production still associated to the position of these sources.

SUMMARY

- Galactic diffuse neutrino has finally been detected, indicating a preference to a CR hardening toward the GC and a cutoff ~ 5 PeV
- A updated version of the KRA-gamma template has been produced for γ and ν taking into account the new data of DAMPE, KASCADE, AMS02, IceTop, and the last Fermi-LAT release.
- The predictions from the γ-optimized model (modeled from GeV Fermi data) explain perfectly both, LHAASO and IceCube observations
- The CMZ is a preferential region to test the different available phenomenological models of the diffuse sea non only with γ but also with ν
- A more detailed answer on Galactic ν will be possible with KM3NeT and IceCube Gen2

