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Importance of High Energy (HE) Neutrino

* HE neutrinos are crucial messenger to explore the origin of cosmic-ray accelerations.

*|ceCube has detected astrophysical neutrinos, but
has not yet fully constraint the neutrino sources.
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IceCube Neutrino Spectral Energy Distribution (SED)
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Cosmic Ray (CR) Acceleration Model in Accretion Flow

* Magnetic Reconnection (e.g., Hoshino + 2013 PIC sim.) .

39 (a) Kimura+2015 A2 3
* Turbulence in kinetic scale based on a single-zone
approximation (e.g., Kimura + 2015).
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(1) _Trajectory of tracer particles of CRp based on 3D GRMHD data 2 o . A
LR accretic
e Assumption: CRps moves aling the streamlines. A i
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# we are interested in acceleration upto ~PeV (gyro radii < mesh size)

* GRMHD dataset of semi-MAD (moderately magnetized state) (TK+2023) simulated using  -20 /
GR(R)MHD code UWABAMI (Takahashi + 2016).

(2) Computation of SED of CRp

* Fokker-Planck Egs. are solved at each point of tracer particle in the
fluid-rest frame.

solid: numerical (this work)
_dashed: analytic (Asano & Meszaros 2016)]

* Diffusion and Injection terms in the energy space is solved using 10
Green func.(Becker+2006) with the hard sphere approximation 10

( D(e) = Ke2).
* Compression/expansions effects are also included.

e N (e, t)

(3) Neutrino SED

* pp collisions of tracer particle of CRps with thermal protons of GRMHD 10
simulation data.

 Gravitational redshift




Results (overview)

* Computations of CRp trajectory + CRp SEDs + Neutrino SEDs using 102 |
time-dependent GRMHD data oo
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Time=-Averaged Neutrino SEDs
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Trajectries, SEDs, and Acc. Timescale of CRp

(a) inflowing CRp
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Trajectries,

(a) inflowing CRp
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Trajectries, SEDs, and Acc. Timescale of CRp

(a) inflowing CRp
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sSuperposition of resulting neutrino can form flat SEDs

*Neutrino originated from (eventually) outflowed CRp
can contrlbute total SEDs comparable to mflowed CRp.
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Dependence of acceleration efficiency
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*Lower the efficiency of the acceleration, lower SEDs can be obtained.

* Higher injection rate — softer SEDs
- more injected particles result in less efficient acceleration due to the energetics.



Summary

*CRp acceleration & Neutrino emission of global accretion flows
based on 3D GRMHD simulation data.

*Due to the global effect (superposition of various injection of
accelaration of CRp) — flatter SEDs (consistent with diffuse
neutrino SEDs)

Comparable neutrino originated from inflows and outflows.

°p-Y processes will be incorporated in near future.



