

CUPID

A next generation $0\nu\beta\beta$ bolometric experiment

Hawraa Khalife for the CUPID collaboration

12 September 2023

Two-neutrino mode: 2νββ

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$

- It can occur for even-even nuclei
- Allowed in the SM
- It is energetically allowed for 35 nuclides and has been observed in 1/3 of them (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U)
- Extremely long half-life $T_{1/2} \sim 10^{18} 10^{24}$ yr

Neutrinoless mode: 0vßß

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

A hypothetical decay, where its observation leads to:

- Affirmation of Lepton number violation
- Neutrinos are Majorana particles ($\overline{v} = v$)

Bolometer features

- High energy resolution
- Full active volume (no dead layer)
- Flexible material choices

H. Khalife – TeVPa2023

Sensitivity of bolometric experiments

b: background index

M: detector mass

T: time of measurement

 ΔE : energy resolution of the detector (FWHM)

Increasing the sensitivity on the effective Majorana mass requires learning from past experiences and an extensive R&D:

- Isotope selection?
- Crystal selection?
- α background rejection?
- U/Th chain background rejection?
- Pileup rejection?

From CUORE to CUPID (CUORE Upgrade with Particle IDentification)

Rejection of the α background from surface contamination:

- Use scintillating crystals coupled to light detectors (dual heat-light readout)
- α particle interaction inside the scintillator leads to a different light output compared to β/γ
- Validate the technology in CUPID-0 and CUPID-Mo demonstrators

Choose a different isotope with a $Q_{\beta\beta}$ above the natural γ radioactivity at 2615 keV.

CUPID-0 and CUPID-Mo demonstrators

CUPID-0

- The first CUPID demonstrator using the scintillating crystal Zn⁸²Se, tested at LNGS (Italy)
- 95 % enrichment in ⁸²Se (5.17 kg)
- $Q_{\beta\beta} = 2998 \text{ keV}$
- Demonstrated an excellent α rejection using the dual heat-light readout (> 99.9%)
- Background index (BI) 3.5×10^{-3} cnts/(keV kg yr)
- Energy resolution at $Q_{\beta\beta}$ is 21.8 keV FHWM

CUPID-Mo

- The chosen CUPID demonstrator using the scintillating crystal Li₂¹⁰⁰MoO₄, tested at LSM (France)
- 95 % enrichment in ¹⁰⁰Mo (2.34 kg)
- $Q_{\beta\beta} = 3034 \text{ keV}$
- Demonstrated an excellent α rejection using the dual heatlight readout (> 99.9%)
- The lowest BI achieved in a bolometric $0\nu\beta\beta$ experiment 2.7×10^{-3} cnts/(keV kg yr)
- Energy resolution at $Q_{\beta\beta}$ is 7.4 keV FHWM

CUPID-0 and CUPID-Mo demonstrators

CUPID-0

CUPID-Mo

- The first CUPID demonstrator up Zn⁸²Se, tested at LNGS (Ita
- 95 % enrichment in ⁸²Se (5
- $Q_{\beta\beta} = 2998 \text{ keV}$
- Demonstrated an excellent light readout (> 99.9%)
- Best limit on the $T_{1/2}^{0V}$ of ⁸²S
- Energy resolution at $Q_{\beta\beta}$ is

Due to the high energy resolution, high internal (France) radiopurity of the crystals and the full α rejection shown kg by CUPID-Mo, Li₂¹⁰⁰MoO₄ has been chosen for CUPID

ection using the dual heat-

 $1.8 \times 10^{24} \text{ yr}$

V FHWM

demonstrator using the scintillating crystal at LNGS (Italy) nt in ⁸²Se (5.17 kg)

- Demonstrated an excellent α rejection using the dual heatlight readout (> 99.9%)
- Best limit on the $T_{1/2}^{0V}$ of 82 Se $> 4.6 \times 10^{24}$ yr
- Energy resolution at $Q_{\beta\beta}$ is 21.8 keV FHWM

The CUPID-baseline experiment

CUPID will build on the experience of CUORE and use its existing cryogenic infrastructure that will host:

- 1596 Li₂MoO₄ crystals (45×45×45 mm)
 - Arranged in 54 towers of 14 floors
- 1710 Ge wafer light detectors
 - With SiO antireflective coating
- 240 kg of ¹⁰⁰Mo (> 95% enrichment)
- Total mass: 450 kg

	CUPID-baseline performance aim
Energy resolution at $Q_{\beta\beta}$	5 keV FWHM
Background index	10 ⁻⁴ counts/(keV kg yr)
$T_{1/2}^{0V}$ exclusion sensitivity (90% C.L.)	1.4×10 ²⁷ yr
LD baseline resolution	< 100 eV RMS
LY	0.3 (keV/MeV)

CUPID-baseline projected background

What we learnt from CUORE, CUPID-Mo and CUPID-0 leads to an expected background index (BI) < 1.36×10^{-4} counts/(kg keV yr)

- > 99.9% of α background rejected by PID
- Muon veto system with 99% geometric efficiency
- β/γ contamination:
 - careful selection of surrounding material, parts cleaning and handling, adding shielding.
 - Perform delayed coincidence cuts to remove background from U/Th chains
- 2vββ pileup: faster readout and higher signal to noise ratio in LDs

R&D: Light collection study

Tests on Li_2MoO_4 crystals coupled to LDs were performed at LNGS. These tests are of great importance to assure that the baseline design of CUPID (open structure) guarantees the necessary α rejection

Reflecting foil test Eur. Phys. J. C (2021) 81:104

- Crystals w/ & w/o reflecting foil
- One LD on top and one on the bottom of each crystal
- No reflecting foil \rightarrow a sufficient α rejection is guaranteed with a good performing LD (< 100 eV RMS baseline resolution)
- Summing the light collected by the top and bottom LDs allows even a more effective tagging of $\boldsymbol{\alpha}$
- Conclusion \rightarrow no reflecting foil is needed to achieve > 99.9% α rejection

Open structure experiment \rightarrow anticoincidence analysis for surface contamination rejection

- Good performing LDs: 35-70 eV RMS
- > 99.9% α rejection achieved
- The light collection gain with the gravity assisted configuration is not worth the additional technical complication

Light detectors test in a pulsetube cryostat

- Validation of the new CUPID-baseline LD assembly was performed in a pulsetube cryostat at IJCLab
- Check the bolometric performance
- 2 Cu frames with 2 LDs each (0.5 mm in thickness) mounted on top of each other
- Baseline energy resolution 70-90 eV RMS

A very important result to achieve the required α rejection in a pulsetube cryostat (as CUORE)

With ¹³³Ba source calibration we achieved an excellent energy resolution of 0.71 keV FWHM at 356 keV

R&D: ongoing

Baseline Design Prototype Tower (BDPT), is the first tower of CUPID-baseline being tested at LNGS (Italy):

- 28 Li₂MoO₄ crystals arrange in 14 floors, 2 crystals each
- 30 Ge light detectors

The main goals are:

- Validation of the assembly procedure \checkmark
- Study the effect of glue type of NTD thermistor
- Validate the bolometric performance of LDs and Li₂MoO₄
- Vibration effect on LD
- Thermalization on each floor

Run 1 (July-Aug 2022): spring loaded Run 2 (Sep-Oct 2022): spring unloaded to see effect on LD performance Run 3: preparation ongoing, further tests on vibrations, thermalization and glue type

Pileup rejection studies

٠

CUPID future sensitivity

Next target:

- 240 kg of ¹⁰⁰Mo
- $T_{1/2}^{0V} > 1.4 \times 10^{27} \,\mathrm{yr}$
- BI < 10⁻⁴ counts/(keV kg yr)

Technically ready in terms of technology and infrastructure

• 1000 kg of ¹⁰⁰Mo

• New cryostat(s)

•
$$T_{1/2}^{0V} > 9.1 \times 10^{27} \,\mathrm{yr}$$

Same experiment as CUPID-baseline, but with a factor 5 improvement on background:

- $T_{1/2}^{0V} > 2.2 \times 10^{27} \,\mathrm{yr}$
- BI < 2×10⁻⁵ counts/(keV kg yr)

- The envisioned background index will allow CUPID to be among the world-leading $0\nu\beta\beta$ experiments by exploring the full inverted ordering region
- Built on the experience and knowledge gained from CUORE and CUPID demonstrators, CUPID-0 and CUPID-Mo
- It aims with its baseline experiment to reach a BI < 10^{-4} cnts/(keV kg yr)
- R&D test are still ongoing to define the final design

- Reducing the bulk and surface backgrounds from the crystals (e.g. by an additional purification stage of the LMO crystals and the elimination of surface backgrounds by pulse shape discrimination)
- Replacing some of the cryogenic vessels and shields with cleaner materials
- Reducing the $2\nu\beta\beta$ pile-up background to below 10-5 counts/(keV·kg·yr)

- Ge wafer provided with AI electrodes on its surface
- When applying voltage across these electrodes an electric field is establish
- The absorption of photons produces electron-hole pairs
- The electric field drifts the charges and it prevents their recombination
- Carriers collide with the lattice during the drift, increasing the temperature
- This means signal amplification that is read by a thermistor (NTD)

CUORE-size TeO₂ bolometer ($5 \times 5 \times 5$ cm³ as in BINGO) coupled to NL LD tested at LSM in 2017 proved the concept

We need to further prove that this concept can be applied to large scale experiment

Estimated backgrounds from detector components

• Total from radioactivity in materials: $8.3 \pm 0.9 \times 10^{-5} \text{ cts/(keV \cdot kg \cdot y)}$

• The driving contributions are contaminations on the surface mainly from close components, Cu frames, PTFE, CuPEN

Based on the results from previous experiments [10,25,26], the sources of background expected in CUPID-0 are:

- the 2*v* θ θ decay of 82Se;

– contaminations of the experimental setup (including the detector itself, the cryostat and the shielding) due to ubiquitous natural radioisotopes of 232Th, 238U and 235U decay chains, and 40K;

 isotopes produced by cosmogenic activation of detector materials, such as 60Co and 54Mn in copper and 65Zn in ZnSe;

– cosmic muons, environmental γ -rays and neutrons

