

Core-collapse Supernovae to constraint neutrino mass with future neutrino detectors

TeVPA 2023 11/09/2023

Federica Pompa - fpompa@ific.uv.es

Pompa, Capozzi, Mena, Sorel (PRL 129, 2022)

5

From cosmology: <u>Di Valentino, Gariazzo, Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: KATRIN Collaboration (2021) $\mathrm{KATRIN} \Rightarrow m_\beta < 0.8 \; \mathrm{eV} \; (90\% \; \mathrm{CL})$

From $0\nu\beta\beta$ measurements: KamLAND-Zen Collaboration (PRL 130, 2022) KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16 \text{ eV}$ (90% CL)

Time-of-flight constraints: Pagliaroli, Rossi-Torres, Vissani (Astropart. Phys. V33, 2010) Kamiokande-II (SN1987A) $\Rightarrow m_{\mu} < 5.8 \text{ eV}$ (95% CL)

From cosmology: <u>Di Valentino, Gariazzo, Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: KATRIN Collaboration (2021) $\text{KATRIN} \Rightarrow m_\beta < 0.8 \text{ eV} (90\% \text{ CL})$

From $0\nu\beta\beta$ measurements: KamLAND-Zen Collaboration (PRL 130, 2022) KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16 \text{ eV}$ (90% CL)

Time-of-flight constraints: <u>Pagliaroli, Rossi-Torres, Vissani (Astropart. Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\nu} < 5.8 \text{ eV}$ (95% CL)

Planck+lensing	$\sum m_{\nu}$
+Pantheon	[eV]
+ DR12 BAO only	< 0.116
$+ DR12 \ BAO+RSD$	< 0.118
+ DR16 BAO only	< 0.158
+DR16 $BAO+RSD$	< 0.101
$+ DR12 \ BAO \ only + DR16 \ BAO \ only$	< 0.121
$+ DR12 \ BAO \ only + DR16 \ BAO+RSD$	< 0.086
+ DR12 BAO + RSD + DR16 BAO only	< 0.125
+DR12 BAO+RSD + DR16 BAO+RSD	< 0.093

From cosmology: <u>Di Valentino,Gariazzo,Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: <u>KATRIN Collaboration (2021)</u> KATRIN $\Rightarrow m_{\beta} < 0.8 \text{ eV} (90\% \text{ CL})$

From $0\nu\beta\beta$ measurements: <u>KamLAND-Zen Collaboration (PRL 130, 2022)</u> KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16$ eV (90% CL)

Time-of-flight constraints: <u>Pagliaroli, Rossi-Torres, Vissani (Astropart, Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\nu} < 5.8$ eV (95% CL)

From cosmology: <u>Di Valentino, Gariazzo, Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: KATRIN Collaboration (2021) $\text{KATRIN} \Rightarrow m_\beta < 0.8 \text{ eV} (90\% \text{ CL})$

From $0\nu\beta\beta$ measurements: KamLAND-Zen Collaboration (PRL 130, 2022) KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16 \text{ eV}$ (90% CL)

Time-of-flight constraints: <u>Pagliaroli, Rossi-Torres, Vissani (Astropart. Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\nu} < 5.8 \text{ eV}$ (95% CL)

Majorana neutrino assumption!

From cosmology: <u>Di Valentino,Gariazzo,Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV}$ (95% CL)

From kinematic measurements: <u>KATRIN Collaboration (2021)</u> KATRIN $\Rightarrow m_{\beta} < 0.8 \text{ eV} (90\% \text{ CL})$

From $0\nu\beta\beta$ measurements: <u>KamLAND-Zen Collaboration (PRL 130, 2022)</u> KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16$ eV (90% CL)

Time-of-flight constraints: <u>Pagliaroli, Rossi-Torres, Vissani (Astropart, Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\nu} < 5.8 \text{ eV}$ (95% CL)

Rate $\sim 0.01/yr$ Rate $\sim 1/yr$

Rate $\sim 10^8/\text{yr}$

9

Rate $\sim 0.01/yr$ Rate $\sim 1/yr$

Rate ~ $10^8/yr$

9

Detector

Interaction

Detector

Source (and propagation!)

Interaction

			25
ighe, Smirnov (PRD 62, 2000)	2 Ca	_	
$p = p \Phi^0_{\nu_e} + (1-p) \Phi^0_{\nu_x}$		\sim	5
$= \frac{1}{2} [(1-p) \Phi^{0}_{\nu_{e}} + (1-p) \Phi^{0}_{\nu_{x}}]$			
$p \bar{p}$			
NO $ U_{e3} ^2 U_{e1} ^2$			
$ U_{e2} ^2 U_{e3} ^2$			

DUNE: D = 10 kpc

10 s	50 ms
~ 845	~ 201
~ 1372	~ 54
~ 1222	~ 95

$$M = 8.8 M_{\odot}$$

$$M = 19 M_{\odot}$$

10 s	50 ms
~ 3644	~ 200
~ 5441	~ 88
~ 4936	~ 120

UPPER BOUNDS ON

$$m_{\nu} = \sqrt{\sum_{i=1}^{3} |U_{ei}|}$$

 $m_{\nu} \leq 0.51^{+0.20}_{-0.19} \text{ eV}$ $m_{\nu} \le 0.91^{+0.30}_{-0.33} \text{ eV}$ $m_{\nu} \leq 2.01^{+0.69}_{-0.55} \text{ eV}$

 $m_{\nu} \leq 0.56^{+0.20}_{-0.21} \text{ eV}$ $m_{\nu} \leq 0.85^{+0.30}_{-0.25} \text{ eV}$ $m_{\nu} \leq 1.65^{+0.54}_{-0.40} \text{ eV}$

DUNE: D = 10 kpc

UPPER BOUNDS ON

$$m_{\nu} = \sqrt{\sum_{i=1}^{3} |U_{ei}|}$$

 $m_{\nu} \leq 0.51^{+0.20}_{-0.19} \text{ eV}$ $m_{\nu} \leq 0.91^{+0.30}_{-0.33} \text{ eV}$ $m_{\nu} \leq 2.01^{+0.69}_{-0.55} \text{ eV}$

 $m_{\nu} \leq 0.56^{+0.20}_{-0.21} \text{ eV}$ $m_{\nu} \leq 0.85^{+0.30}_{-0.25} \text{ eV}$ $m_{\nu} \leq 1.65^{+0.54}_{-0.40} \text{ eV}$

DUNE: D = 10 kpc

10 s	50 ms
~ 845	~ 201
~ 1372	~ 54
~ 1222	~ 95

$$M = 8.8 M_{\odot}$$

$$M = 19 M_{\odot}$$

10 s	50 ms
~ 3644	~ 200
~ 5441	~ 88
~ 4936	~ 120

UPPER BOUNDS ON

$$m_{\nu} = \sqrt{\sum_{i=1}^{3} |U_{ei}|}$$

 $m_{\nu} \leq 0.51^{+0.20}_{-0.19} \text{ eV}$ $m_{\nu} \le 0.91^{+0.30}_{-0.33} \text{ eV}$ $m_{\nu} \leq 2.01^{+0.69}_{-0.55} \text{ eV}$

 $m_{\nu} \leq 0.56^{+0.20}_{-0.21} \text{ eV}$ $m_{\nu} \leq 0.85^{+0.30}_{-0.25} \text{ eV}$ $m_{\nu} \leq 1.65^{+0.54}_{-0.40} \text{ eV}$

HK: D = 10 kpc

$M = 8.8 M_{\odot}$	10 s	50 ms
90%IBD	16003	414
ES+10%IBD	3462	249
90%IBD	16223	466
ES+10%IBD	3419	130
90%IBD	16678	573
ES+10%IBD	3491	178

Take-home message

This project has received funding and support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

The neutrino signal coming from the Supernova neutronization burst, visible only in the ν_{ρ} spectrum, constitutes an important tool to constrain the absolute value of the neutrino mass and it can give a complementary (and independent) measurement to β -decays and cosmology.

Take-home message

Waiting for SN20XXX...

This project has received funding and support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

The neutrino signal coming from the Supernova neutronization burst, visible only in the ν_{ρ} spectrum, constitutes an important tool to constrain the absolute value of the neutrino mass and it can give a complementary (and independent) measurement to β -decays and cosmology.

Backup **Supernova parameters uncertainties: luminosity**

Kachelriess,

Tomas,

Buras, Janka, Marek, Rampp (PRD 71, 2005)

The neutronization burst results to be a robust, model independent prediction of the Supernova models.

Very slight variations as a function of progenitor mass (left panel), microphysics of neutrino interactions (middle panel) and equation of state (right panel).

Backup Supernova parameters uncertainties: mean energy

Kachelriess,

Tomas,

Buras, Janka, Marek, Rampp (PRD 71, 2005)

 $\langle \epsilon_{\nu} \rangle_{RMS} [MeV]$

The neutronization burst results to be a robust, model independent prediction of the Supernova models.

Very slight variations as a function of progenitor mass (left panel), microphysics of neutrino interactions (middle panel) and equation of state (right panel).

Backup **Supernova neutrinos emission: details**

 $\Phi^{0}_{\nu_{\beta}}(E,t) = \frac{L_{\nu_{\beta}}(t)}{4\pi D^{2}} \frac{\varphi_{\nu_{\beta}}(E,t)}{\langle E_{\nu_{\beta}}(t) \rangle} \qquad \Phi^{0}_{\nu_{\mu}}, \Phi^{0}_{\nu_{\tau}} \equiv \Phi^{0}_{\nu_{x}}$

 $\varphi_{\nu_{\beta}}(E,t) = \xi_{\beta}(t) \left(\frac{E}{\langle E_{\nu_{\rho}}(t) \rangle}\right)^{\alpha_{\beta}(t)} e^{\left\{\frac{-[\alpha_{\beta}(t)+1]E}{\langle E_{\nu_{\beta}}(t) \rangle}\right\}}$

Backup **Dependency on SN parameters**

One time-windows: [0, 10] s

 $\begin{array}{l} \langle E_{\nu_{\beta}} \rangle = (1 + f_{\nu_{\beta}}^{1}) \ \langle E_{\nu_{\beta}} \rangle^{0} \\ \\ \alpha_{\nu_{\beta}} = (1 + f_{\nu_{\beta}}^{2}) \ \alpha_{\nu_{\beta}}^{0} \end{array}$

Two time-windows: [0, 0.5] s and [0.5, 10] s

Backup Dependency on SN distance

Likelihood analysis

<u>Pagliaroli, Vissani, Costantini, Ianni (Astropart. Phys. V31, 2009)</u>

- Dataset generation $(\delta t_i, E_i)$ generation by fixing D
- Likelihood construction $L(t_i, m_{\nu}) = \int R(t_i, E) \ G(E) \ dE$ G(E): Gaussian smearing (10% energy resolution) $\chi^2(t_i, m_\nu) = -2\log(L)$
- Sensitivity to m_{μ}

 $\Delta \chi^2(m_{\nu}) = \chi^2(m_{\nu}) - \chi^2_{min}(m_{\nu})$

Backup **Evolution operator definition** $\mathcal{T}(\overline{P_{i-1}P_{j}}) = \exp\{-i(H_0 - V_{matter,j}) \cdot \overline{l_j}\}$ $H_0 = \frac{U_{PMNS} M_{mass} U_{PMNS}^{\dagger}}{2F}$ $V_{matter,i} = \operatorname{diag}(\sqrt{2} G_F \overline{N_i}(x))$ $\overline{N_j}(x) = \frac{1}{l_j} \int_{x_{j-1}}^{x_j} N_j(x) \, dx$ $N_i(x) = \alpha_i + \beta_i x^2 + \gamma_i x^4$

Lisi, Montanino (PRD 56, 1997)

 ${\cal U}$

$$\Phi_{\nu_e} = p \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0$$
$$\Phi_{\nu_x} = \frac{1}{2} [(1-p) \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0]$$

	p	\bar{p}
NO	$ U_{e3} ^2$	$1 - P_{2e}(E, \cos \theta)$
ΙΟ	$P_{2e}(E,\cos\theta)$	$ U_{e3} ^2$

$$\begin{split} P_{2e}(E,\cos\theta) &= \mathcal{T}_{e\beta} \cdot U_{PMNS,2} \\ \mathcal{T}_{\alpha\beta} &= \mathcal{T}(\overline{P_{det}P_1}) \, \mathcal{T}(\overline{P_1P_2}) \cdot \cdot \cdot \mathcal{T}(\overline{P_MP_{prod}}) \\ \\ & \text{Lisi, Montanino (PRD 56, 1997)} \end{split}$$

Earth matter effects

ν_e channel – IO

Backup Mikheyev-Smirnov-Wolfenstein effect Dighe, Smirnov (PRD 62, 2000)

Adiabatic or partially adiabatic neutrino flavor conversion in medium with varying density

