TeVPa 2023 @ Napoli

Radio and Neutrino Constraints on Cosmic Ray Acceleration in Massive Galaxy Clusters

(published in ApJ, arvix: 2307.13273)

ICRR, University of Tokyo

Katsuaki Asano (ICRR), Kohta Murase (Penn. State, YITP)

<u>Galaxy Clusters</u> as Cosmic ray "reservoirs"

optimistic (internal source) models explain ~100% of the diffuse neutrino background

Neutrino "Upper Limit"

[IceCube collaboration 2022]

Planck-S7 clusters

&

• 9.5-yr data of muon track events

physically motivated limit

the contribution from massive ($M_{500} \gtrsim 3 \times 10^{14} M_{\odot}$) clusters is less than ~5%.

a very deep limit, excludes some of the theoretical models

Diffuse Radio Emission in Clusters

Giant Radio Halo	<u>Radio Relic</u>	<u>Mini Halo</u>
Coma [Bonafede+2022]	"Sausage" cluster	Perseus
Spherical	elongated	Spherical
~ 1Mpc	~ 1Mpc	~ 300 kpc
Merging clusters	Merging clusters	Relaxed clusters

Correlate with dynamical state of clusters

particle acceleration & magnetic field amplification

2023/9/11

Overview

Turbulent Re-acceleration Model

relativistic seed electrons revived through the <u>Fermi-II acceleration</u> [e.g., Brunetti+, Fujita+]

Need of seed

- primary electrons : from AGNs shocks,...
- secondary electrons : from pp collision

both models are consistent with radio and gamma-ray observations [KN+21,KN+22]

 $t_{acc} \approx 200 \text{ Myr} \left(\frac{M_s}{0.5}\right)^{-4} \left(\frac{L}{300 \text{ kpc}}\right) \left(\frac{c_s}{1500 \text{ kms}^{-1}}\right)$

can explain various features of radio halos [e.g., Brunetti & Jones 2014]

if, driven by major mergers

$$D_{pp} \propto M^{1/3}$$

acceleration efficiency scales with mass

Radio halo: Coma cluster

model normalized by the radio observation of Coma

→ pure hadronic model without re-acceleration is excluded.
 But, the re-acceleration of secondary *e* is possible.

Luminosity-Mass relation

TTD model is consistent with the radio observation

observed radio halos are massive $M_{500} > 3 \times 10^{14} M_{\odot}$

merger + TTD acceleration for various M

$D_{pp} \propto M^{1/3}$

- magnetic field: $B \propto M^0$
- seed injection: $L_{CR}^{inj} \propto M^{5/3}$
- Fokker-Planck eq. (CRe and CRp)

Neutrino (100 TeV)

Diffuse Neutrino Background

model prediction is comparable to the upper limit
 → more optimistic models are excluded

Constraints on the re-acceleration model

Normalized by the radio luminosity

observation of Coma [Brunetti+]

<u>Summary</u>

Multi-messenger (Radio & Neutrino) limit on the Turbulent Re-acceleration Model

- Radio halo and turbulent re-acceleration
- secondary electrons can be the *seed* electrons
- merger-induced TTD acceleration predicts $D_{pp} \propto M^{1/3}$
- $P_{1.4} \propto M^{3.5}$ is consistent with radio observations

Neutrino upper limit

- massive $(M_{500} \sim 10^{15} M_{\odot})$ clusters dominate the neutrino background in re-acc. model
- however, massive clusters are constrained by the stacking analysis of ν_{μ} track events

Constraints on the re-acceleration model

- magnetic field $B < 1\mu$ G is excluded, if seed originates from pp
- a deeper limit (~1% of IC level) would completely exclude the secondary model

Work II: N.K. & Asano (2022) Statistical properties of radio halos

Work II: N.K. & Asano (2022) Statistical properties of radio halos

- Both primary & secondary electron models are consistent with the observation, but with different values of parameters.
- turbulent re-acceleration model can explain luminosity-mass relation

future multi-frequency observation is important to test our model

Work IV: N.K., Brunetti, Vazza & Gheller, under review Mega halos and solenoidal turbulence

- × 30 larger than classical RH!
- extending up to the virial radius
- found at low frequency (~100MHz)
 What is the origin of this "extended component" ??

<u>Work IV:</u> N.K., Brunetti, Vazza & Gheller, under review <u>Mega halos and solenoidal turbulence</u>

Work I:Nishiwaki, Asano & Murase (2021)Radio halo of the Coma cluster

- Mpc scale radio (synchrotron) emission
- magnetic field by Faraday rotation (~μG)
- gamma ray upper limit by Fermi

Questions:

- origin of CR electrons? (primary or secondary?)
- source of CRs? (shocks? AGNs?)
- neutrinos from clusters?

develop 1D model, including re-acceleration and hadronic (pp) process!

Work I:N.K., Asano & Murase (2021)Radio halo of the Coma cluster

 1D (radial) code to calculate multi-wavelength and multi-messenger emission from GCs.

CR electrons can originate from pp collision of protons!

the radial profiles of the CR injection and re-acceleration depend on electron-to-proton ratio of CRs.

Work III: N.K., Asano & Murase (2023) Neutrino upper-limit & constraints on the re-acceleration model

contribution to the diffuse neutrino background should be smaller than ~5%

constraints on re-acceleration model (e-p ratio, B field, mechanism...)

use

merger tree + FP equation to calculate diffuse neutrino background

<u>Work III:</u> N.K., Asano & Murase (2023) <u>Neutrino upper-limit & constraints on the</u> <u>re-acceleration model</u>

