

Scattering and Neutrino Detector at the LHC

SND@LHC experiment at CERN

Oliver Lantwin on behalf of the SND@LHC collaboration

[oliver.lantwin@cern.ch]

TeVPA 2023 — 14 Sept 2023

Location

- About 480 m away from the ATLAS IP in a former service tunnel, TI18
- Symmetric to TI12 tunnel where FASER is located

- > Charged particles deflected by LHC magnets
- > Shielding from the IP provided by 100 m rock
- > Angular acceptance: $7.2 < \eta < 8.4$

Neutrino physics at the LHC

The LHC is a unique facility for the study of energetic neutrinos and for measuring $pp \rightarrow \nu X$ in an unexplored domain

PRL 122 (2019) 041101

- > XSEN [1804.04413]
- Physics potential of an experiment using LHC neutrinos [1903.06564]
- Further studies on the physics potential of an experiment using LHC neutrinos [2004.07828]

The SND@LHC experiment

Veto system:

 Tag penetrating muons using plastic scintillator

Vertex detector and EM calorimeter:

- Emulsion cloud chambers
 (Emulsion+Tungsten) for neutrino-interaction detection
- Scintillating fibers for timing information and energy measurement

Hadronic calorimeter and muon system:

> Iron walls interleaved with plastic-scintillator planes for fast time resolution and energy measurement

Technical Proposal LHCC-P-016, detector paper arxiv:2210.02784 (to appear in JINST)

The vertex tracker

- > 830 kg
- $\rightarrow 390 \times 390 \text{ mm}^2$
- Replacement every 25 fb⁻¹ or three times a year
- SciFi tracker between walls measures showers and provides timing
- > 2000 neutrino events expected in Run 3

pp collision data in 2022

Successful data-taking since the beginning of Run 3

- $\,$ > Detector operation uptime $\sim 95\%$
- \rightarrow Total recorded luminosity: 36.8 fb⁻¹
- > Three emulsion detector replacements in 2022
- $\,$ > Additional \sim 30 ${\rm fb}^{-1}$ collected in 2023

			Start	beam col	nmissionin	g First sta	able beams @6.8TeV End c					run		
2022	Jan	Feb	Mar	Apr	Ma	iy Jun	Jul	Aug	Sep	Oct	Nov	Dec	INSTRUMENTED TARGET MASS	INTEGRATED LUMINOSITY
EMULSION RUN0													39 kg	0.46 fb ⁻¹
EMULSION RUN1													807 kg	9.5 fb ⁻¹
EMULSION RUN2													784 kg	20.0 fb ⁻¹
EMULSION RUN3													792 kg	8.6 fb ⁻¹

Emulsion analysis

Emulsion analysis of 2022 data in full swing:

- > Scanning at 4 different laboratories (+1 lab soon)
- > Analysis progressing well

Measured track density per 10 ${\rm fb}^{-1}$: 10⁵ cm⁻²

First results: Observation of collider muon neutrinos with the SND@LHC experiment

PRL 131 031802 (2023)

detectors

Analysis strategy

Analysis of 2022 dataset, corresponding to 36.8 fb^{-1}

- > Expected signal yield ($v_{\mu} + \overline{v_{\mu}}$ interactions) : 157 ± 37
- $\,\,$ > Challenge: background from $\sim 10^9$ muons

 \rightarrow Very conservative selection to ensure pure signal sample

Selection

Fiducial Volume selection

- > A Neutral vertex in the 3rd or 4th target walls
- > Reject side-entering backgrounds Signal acceptance: 7.5 %

Muon neutrino identification selection

- > Large hadronic activity in SciFi and HCAL
- > A reconstructed and isolated muon track Signal selection efficiency: 36 %

u_{μ} CC MC Simulation

Total number of u_{μ} CC events expected in 36.8 ${\rm fb}^{-1}$ after cuts: 4.2

Entering muon background

Background due to muons being missed due to detector inefficiency

Muon DIS

Muon EM

- > Muons in acceptance: $N_{\mu} \sim 5 imes 10^8$ SNDLHC-NOTE-2023-001, paper forthcoming
- > Detector inefficiency (two veto and two SciFi planes): 5×10^{-12}
- \rightarrow Completely negligible with applied selection

Neutral hadron background

Neutral hadrons produced upstream of the detector by high energy muons

Total number of expected background events due to neutral hadrons: $(8.6 \pm 3.8) \times 10^{-2}$

Results

For more details, see PRL 131 031802 (2023)

Lepton flavour universality (LFU)

SND@LHC can distinguish all three neutrino flavours and measure ratios $\frac{v_e}{v_{\mu}}$ and $\frac{v_e}{v_{\tau}}$

- > Contamination fraction $\omega_{\pi,K}$ approximately constant above 600 GeV
- Measurement uncertainty of 10% stat. and 10% syst. expected

 Measurement uncertainty of 30% stat. and 22% syst. expected

Heavy flavour physics

Due to the off-axis position, about 90% of $v_e + \overline{v_e}$ originate from charm decays

- > Measurement of charm production at high pseudorapidity (gg \rightarrow $c\bar{c})$
- > Probe gluon PDF at low momentum fraction $x \sim 10^{-6}$.
 - > Relevant for FCC detectors and
 - > Extra-galactic neutrino observation (atmospheric neutrino background)

Neutrino origin

Charm and neutrino η

Scattering of light dark matter

JHEP03(2022)006

- > Sensitivity model-dependent
- Considering as an example LDM coupled to the standard model via a leptophobic portal
 Production

Direct searches for feebly interacting particles

 > Signature: Vertex with two charged tracks pointing back to IP

- > Full background studies necessary
 - > muon DIS
 - > neutrino DIS
 - combinatorial
- Run 3: proof-of-concept, become competitive with AdvSND-far for Run 4
- > Not (yet) taking into account AdvSND-near
 - Additional acceptance due to proximity to IP

IHEP03(2022)006

 > AdvSND-near could benefit from reduced backgrounds off-axis

AdvSND

Upgrade of the detector in view of Run 4 using electronic vertex trackers

Two off-axis forward detectors:

AdvSND-near: $4 < \eta < 5$

- > Overlap with LHCb η coverage
- > Reduction of systematic uncertainties
- Provide normalization

	AdvSND-near	AdvSND-far
η	[4.0, 5.0]	[7.2, 8.4]
mass [t]	5	5
surface [cm ²]	120×120	100×55
distance [m]	55	480 (FPF:630)

AdvSND-far: $7.2 < \eta < 8.4$

- > Acceptance similar to SND@LHC
- Magnet for charge separation
- > In TI18 or FPF

Conclusion

SND@LHC is a brand new experiment for neutrino physics and feebly interacting particle searches at the LHC

- > Very successful datataking in 2022 with 36.8 ${\rm fb}^{-1}$ collected and an uptime of \sim 95%, with 290 ${\rm fb}^{-1}$ in total expected in Run 3
- > First result: Observed muon neutrinos from the LHC with 2022 data
- > New detector at the LHC with a unique acceptance and technology:
 - Diverse physics programme for Run 3, with many measurements previously impossible at colliders
 - > Even more versatile after upgrade for High Luminosity LHC

Stay tuned for first results from emulsions and much more!