

CMS Experiment at the LHC, CERN

Data recorded: 2017-Jun-28 07:15:14 EDT

Run / Event / LS: 297620 / 285430183 / 201

Search for Dark Matter with mono-X Signatures in CMS

JeongEun Lee Seoul National University on behalf of the CMS Collaboration

TeVPA 2023, Napoli, Italy 2023/Sep/11-15

jelee@cern.ch

Dark Matter Search at the LHC and CMS

- Dark matter (DM) is well-established in the cosmos
 - Is it Weakly Interacting Massive Particle (WIMP)? : M~10 MeV-100 TeV
- LHC is world's most powerful discovery machine!
 - Run 2 : from 2015 2018 at \sqrt{s} = 13 TeV, ~140 fb⁻¹ collected \checkmark
 - Run 3 : started 2022 2025 at $\sqrt{s} = 13.6 \text{ TeV}$, ~70 fb⁻¹ (now)
- **CMS** is a multi-purpose detector that records pp collisions from the LHC

Indirect detection

Collider, LHC

DM

Direct

SM

SM

Model Generality

Theoretical Framework

<u>Mono-X class of searches (CMS)</u>

Signature X		DM Model	CMS publication	Luminosity [fb⁻¹] (√s)	
Jet, V (→qq)	$+ p_{T}^{miss}$	(1, 2, 3, 4)	<u>JHEP 11 (2021) 153</u>	<u>137-(13 TeV)</u>	
Z (→ll)	+ p _T ^{miss}	(1, 4, 6)	<u>EPJ. C 81 (2021) 13</u>	<u>137-(13 TeV)</u>	
VBF	+ p _T ^{miss}	(2)	<u>PRD 105 (2022) 092007</u>	<u>19.7 (8 TeV)+140 (13 TeV)</u>	
WW	$+ p_{T}^{imiss}$	(8)	PAS-EXO-21-012	<u>137-(13 TeV)</u>	
Displaced µµ	+ p _T ^{miss}	(9)	arXiv:2305.11649	<u>137-(13 TeV)</u> most recent	
Higgs	+ p _T ^{miss}	(6,7)	<u>JHEP 03 (2020) 025</u>	35.9 (13 TeV)	
γ	+ p _T ^{miss}	(1, 4)	<u>JHEP 02 (2019) 074</u>	35.9 (13 TeV)	
tt, t/tW	+ p _T ^{miss}	(1)	<u>JHEP 03 (2019) 141</u>	35.9 (13 TeV)	

A broad spectrum of DM models and visible 'X'

- 1. Simplified DM (Spin-1,0 mediated), Phys. Dark Univ. 27 (2020) 100371
- 2. Higgs portal DM, Phys. Lett. B 707 (2012) 570, Phys. Rev. D 82 (2010) 055026
- 3. Fermion portal DM , <u>JHEP 11 (2013) 171</u>
- 4. **ADD**, <u>Phys. Lett. B 429 (1998) 263</u>
- 5. Non-thermal DM, Phys. Rev. D 93, 055007
- 6. **2HDM (+a/Z')**, JHEP 05, 138 (2017), Phys. Dark Univ. 27, 100351 (2020)
- 7. Baryonic Z', Phys. Dark Univ. 26 (2019) 100371
- 8. **Dark Higgs**, <u>JHEP 4 (2017) 143</u>
- 9. Inelastic DM, Phys. Rev.D 64, 043502, Phys. Rev. D 93.063523 and so on ...

<u>Mono-jet + mono-V(qq) search</u>

- Signal : Jets + p_T^{miss} ⇒ Mono-jet, Mono-V categories and combined
 Selection : a
 - Z'Narrow jets from ISR Jet p_T (AK4) > 250 GeV, $|\eta| < 2.4$
 - Use <u>DNN</u> ID to distinguish V(qq) from ISR jets
 - p_{T}^{miss} Trigger (offline $p_{T}^{miss} > 250$ GeV)
- Veto events with leptons, photons, b-jets
- Dominant backgrounds : Z(νν)/W(lν)+jets, γ+jets
 Constrained in data-driven control regions (CR)

Fat jets from V→ qq Jet p_T (AK8) > 100 (150) GeV, |η| < 2.4 M_{ii} window 65-120 GeV

JHEP 11 (2021) 153

Background estimation

Challenge: Estimate boson p_{τ} in Z(vv), W(lv)

ee, $\mu\mu$, γ , e, μ

Monojet Signal Region (SR)

Transfer factors from MC

Normalization and shape from data \rightarrow Common uncertainties cancel especially theory, jet/p_{τ}^{miss} calibration

5 control regions (CR) per SR

JHEP 11 (2021) 153

Jeongeun Lee (SNU), 11-16 Sep 2023

Mono-jet/V results

- Monojet dominates in low-g_q regime if DM coupling sizable (depends on parameters) Higgs portal : VH mode ⇒ Constraint on BR(h → invisible) < 27.8% (in backup)

Mono-Z(ll) search

- Signal : Events with OSSF dilepton (ee, $\mu\mu$) + p_T^{miss}
- Selection :
- Single/Double lepton Triggers (ee 23,12, μμ 17,8 GeV)
- offline $p_T^{lep} > 25$ (20) GeV, $p_T^{miss} > 100$ (80) GeV
- $|M_{II} M_Z| < 15 \text{ GeV}, p_T^{II} > 60 \text{ GeV}, \Delta R_{II} < 1.8$
- $n_i < 2$, b-jet, tau veto $\Delta \phi(j, p_T^{miss}) > 0.5$,
- Kinematic cuts : $|p_T^{\text{miss}} p_T^{\text{ll}}|/p_T^{\text{ll}} < 0.4, \Delta \varphi(Z, p_T^{\text{miss}}) > 2.6$

- 3-lepton CR : WZ \rightarrow lvll
- 4-lepton CR : ZZ→ IIII
- ο eµ CR : OSOF events
- DY CR : low p_T^{miss} sideband (80-100)

 $m_{\rm T} = \sqrt{2} p_{\ell\ell}^{\rm T} p_{\rm T}^{\rm miss} [1 - \cos \Delta \phi (\vec{p}_{\rm T}^{\ell\ell}, \vec{p}_{\rm T}^{\rm miss})]$ Non-resonant signal in high $p_{\rm T}^{\rm miss}$ or $M_{\rm T}$ tail Fit $p_{\rm T}^{\rm miss}$ or $M_{\rm T}$ (2HDM+a) to data

g Q00

Mono-Z(ll) results

EPJ. C 81 (2021) 13

Jeongeun Lee (SNU), 11-16 Sep 2023

Mono-VBF search (Higgs portal)

- Signal : 2 high p_{τ} forward (3 $\leq |\eta| \leq$ 5), energetic jets + p_{τ}^{miss}
- 2 categories : MTR (VTR) = MET (VBF) Triggered Region
- $p_{\tau}^{\text{miss}} > 250 \ (160 250) \ \text{GeV}, \ \min[\Delta \phi(p_{\tau}^{\text{jet}}, p_{\tau}^{\text{miss}})] > 0.5 \ (1.8)$
- m_{jj} > 200 (900) GeV, $|\Delta φ_{jj}|$ < 1.5 (1.8) Dominant backgrounds : Z(νν)/W(lν)+jets, γ+jets ⇒ 5 CR

PRD 105 (2022) 092007

Jeongeun Lee (SNU), 11-16 Sep 2023

Higgs portal Interpretations

- SM exp. BR(h \rightarrow inv) ~ 0.1% (given by ZZ^{*} \rightarrow 4v) \Rightarrow Enhanced decay in models ($m_{DM} < m_{H}/2$)
- Combination of previous results since Run 1 (7 TeV, 8 TeV)+ 2 (13 TeV).
- BR(H \rightarrow inv) limits translated to σ_{WIMP-N} limit to compare with direct detection experiments.
- Higgs boson not only provides mass, it could also serve as a portal into darkness !

<u>2303.01214</u>

PAS-EXO-21-012

Mono-WW search

Jeongeun Lee (SNU), 11-16 Sep 2023

Mono-WW results

Z' coupling :

 $g_q = 0.25$

 $g_{\chi} = 1$

- Results from the combined channel (di-leptonic + semi-leptonic decays)
- Most stringent limit for m_{DM} = 200 GeV :
 - \circ m_s < 350 GeV exclude at m_Z, = 700 GeV
 - \circ m_z, < 2200 GeV excludes at m_z = 160 GeV

PAS-EXO-21-012

Mono-displaced µµ search

- First dedicated collider search for inelastic DM !
- Signature :

Dark photon A' produced, recoiling against ISR jet. A' promptly decays to two DM states χ_1 and χ_2 with near mass-degeneracy ($\rightarrow \chi_2$ is LLP)

- Macroscopic χ_2 lifetime makes a **displaced dimuon vertex**
- Small DM mass splitting (Δ) \Rightarrow a **soft \mu collimated with p_{\tau}^{miss}**
- Advantage of low background

5 Parameters:

 $m_1(\chi_1)$ = 3-80 GeV, Δ= $m_2 - m_1$ = {0.1, 0.4} m_1 , m_A , = 3 m_1 cτ(χ_2) = 1-1000 mm, α_D = α_{EM} , 0.1

- Kinetic mixing ϵ between γ/Z and A' introduces SM portal
- Discriminator : Muon vertex displacement, dxy

from Andre Frankenthal

<u>Mono-displaced µµ results</u>

- Upper limits are set on the the $\sigma(pp \rightarrow A' \rightarrow \chi_2 \chi_1) \times BR(\chi_2 \rightarrow \chi_1 \mu \mu)$.
- Higher experimental sensitivity to lower mass splitting (Δ) scenarios.
- $\alpha_{D} = \alpha_{EM}$ scenario more sensitive, but $\alpha_{D} = 0.1$ scenario more cosmologically relevant.

Conclusion

- Mono-X Dark matter searches are core physics program in CMS.
- Wide range of probes for different types of SM-DM interactions.
 - DM + jet, Z, H, photon, top, diboson, displaced muons ..
- Presented results for CMS, all of which use the **full Run2 results**.
- Strongest constraints from full data set typically in TeV range.
- Still plenty of additional parameter space for small couplings, etc.
- All DM public results in here ⇒ <u>ATLAS</u>, <u>CMS</u>
- Partial Run-2 results to be updated to full Run-2.
 ⇒ Stay tuned for this and the upcoming Run-3 !

Thank you for your attention!

Backup (LHC schednule)

Jeongeun Lee (SNU), 11-16 Sep 2023

CMS DM summary plot

vector mediator $(q\bar{q}), g_q = 0.25, g_{DM} = 1, m_\chi = 1 \text{ GeV}$		0.35-0.7 1911.037	61 (≥ 3j)	18 fb ⁻¹
vector mediator ($f\hat{f}$), $g_q = 0.1$, $g_{DM} = 1$, $g_t = 0.01$, $m_{\chi} > 1$ TeV			0.2-1.92 2103.02708 (2e, 2µ)	140 fb ⁻¹
(axial-)vector mediator $(q\bar{q}), g_q = 0.25, g_{DM} = 1, m_{\chi} = 1 \text{ GeV}$	(axial)-vector mediator		0.5-2.8 1911.03947 (2j)	137 fb ⁻¹
(axial-)vector mediator ($\chi\chi$), $g_q = 0.25$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV			0.0-1.95 2107.13021 (≥ 1j + p _T ^{miss})	101 fb ⁻¹
(axial)-vector mediator ($i\tilde{t}$), $g_q = 0.1$, $g_{DM} = 1$, $g_f = 0.1$, $m_{\chi} > m_{med}/2$			0.2-4.64 2103.02708 (2e, 2µ)	140 fb ⁻¹
scalar mediator (+t/tt), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV		$0.0-0.29$ 1901.01553 (0, $1\ell + \ge 2j + p_T^{miss}$)		36 fb ⁻¹
scalar mediator (+ $t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_\chi = 1$ GeV	scalar mediator	0.05-0.4 2107.10892 (0, 1ℓ + ≥ 2j	+ p ^{miss})	137 fb ⁻¹
scalar mediator (fermion portal), $\lambda_u = 1$, $m_\chi = 1$ GeV			0.0-1.5 2107.13021 (≥1j + p _T ^{miss})	101 fb ⁻¹
pseudoscalar mediator (+//V), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV		0.0-0.47 2107.13021 (≥ 1j + r	p <mark>m</mark> iss)	101 fb ⁻¹
pseudoscalar mediator (+t/tt̃), $g_q = 1$, $g_{DM} = 1$, $m_{\chi} = 1$ GeV	oseudoscalar mediator	0.0-0.3 1901.01553 (0, $1\ell + \ge 2j + p_T^{miss}$)		36 fb ⁻¹
pseudoscalar mediator (+ $t\bar{t}$), $g_q = 1$, $g_{DM} = 1$, $m_\chi = 1$ GeV	poor a coord and in ordinato.	0.05-0.42 2107.10892 (0 , $\mathbf{l}\ell + \geq \mathbf{2j} + \mathbf{p}_1^{\text{mass}}$)		137 fb ⁻¹
complex sc. med. (dark QCD), $m_{\pi_{DS}} = 5$ GeV, $c\tau_{X_{DS}} = 25$ mm			0.0-1.54 1810.10069 (4j)	16 fb ⁻¹
Baryonic Z', $g_q = 0.25$, $g_{DM} = 1$, $m_\chi = 1$ GeV			0.0-1.6 1908.01713 (h + p _T ^{miss})	36 fb ⁻¹
Z' mediator (dark QCD), $m_{dark} = 20 \text{ GeV}$, $r_{inv} = 0.3$, $\alpha_{dark} = \alpha_{dark}^{peak}$			1.5-5.1 2112.11125 (2) + p _T ^{mis}	138 fb ⁻¹
$Z' - 2HDM$, $g_{Z'} = 0.8$, $g_{DM} = 1$, $tan\beta = 1$, $m_{\chi} = 100 \text{ GeV}$			0.5-3.1 1908.01713 (h + p _T ^{miss})	36 fb ⁻¹
Leptoquark mediator, $\beta = 1$, $B = 0.1$, $\Delta_{X,DM} = 0.1$, $800 < M_{LQ} < 1500$ GeV		0.3-0.6 1811.10151 (?	$(\mu + 1j + p_T^{miss})$	77 fb ⁻¹
axion-like particle, $f^{-1} = 1.2 \text{ TeV}^{-1}$			0.5-2.0 CMS-PAS-EXO-21-007 (pp + γγ)	103 fb ⁻¹
inelastic dark matter model, $y = 10^{-6}$, $\alpha_D = 0.1$	0.003-0.08 2305.11649 (2 displaced μ + p ^{rits})			138 fb ⁻¹
inelastic dark matter model, $y = 10^{-7}$, $\alpha_D = 0.1$	0.02-0.08 2305.11649 (2 displaced μ + p ^T ₁ ^(s))			
dark Higgs, $g_q = 0.25$, $g_{DM} = 1$, $\theta = 0.01$, $m_{\chi} = 200$ GeV, $m_{Z'} = 700$ GeV	0.16-0.352 CMS-PAS-EXO-21-012 (1/ + 2j + p _T ^{miss} , 2/ + p _T ^{miss})			137 fb ⁻¹
1	0 ⁻² 10 ⁻	1 10'	J 10 ¹	-
*		Mass Scale [ToV]	10	
		Mass Scale [lev]		

CMS DM summary plots

CMS

2HDM+a DM Searches (ATLAS)

2HDM+a DM Searches (ATLAS)

2HDM+a, Dirac DM, $\sin\theta = 0.35$, $\tan\beta = 1$, $g_y = 1$, $m_A = m_H = m_{H\pm} = 1.2 \text{ TeV}$

ATLAS-EXOT-2018-064 arXiv:2306.00641

Mono-Jet/V(qq) Signal Region (SR)

CMS

Mono-Jet/V(qq) results

<u>Mono-jet/V : Limit on BR(h→invisible)</u>

Mono-Z(ll) background estimation

- 3-lepton (WZ) and 4-lepton (ZZ) control regions to estimate 2-lepton WZ and ZZ
 - Also, eµ CR : OSOF events and DY CR : low p_{τ}^{miss} sideband (80-100)

Emulated p_{τ}^{miss} (M_{τ}) is estimated from the vectorial sum of p_{τ}^{miss} and additional lepton p_{τ}

<u>Mono-Z(ll) results; ADD, h invisible</u>

Fig. 9 The value of the negative log-likelihood, $-2\Delta \ln \mathcal{L}$, as a function of the branching fraction of the Higgs boson decaying to invisible particles

EPJ. C 81 (2021) 13

Higgs portal WIMP (CMS, ATLAS)

Higgs portal WIMP (ATLAS)

Mono-VBF event selection

Observable	MTR	VTR	
Choice of pair	leading- $p_{\rm T}$ jets	leading- <i>m</i> _{jj} jets	
Leading (subleading) jet	$p_{\rm T} > 80 (40) { m GeV}, \eta < 4.7$	$p_{\rm T} > 140(70){ m GeV}, \eta < 4.7$	
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 \mathrm{GeV}$	$160 < p_{\mathrm{T}}^{\mathrm{miss}} < 250\mathrm{GeV}$	
$\min(\Delta \phi(\vec{p}_{T}^{miss}, \vec{p}_{T}^{jet}))$	>0.5	>1.8	
$ \Delta \phi_{ii} $	< 1.5	<1.8	
m _{jj}	$>200\mathrm{GeV}$	$>900\mathrm{GeV}$	
$ p_{\rm T}^{\rm miss} - {\rm calo} \ p_{\rm T}^{\rm miss} /p_{\rm T}^{\rm miss}$	<	0.5	
Leading/subleading jets $ \eta < 2.5$	NHEF < 0.8 , CHEF > 0.1		
HF noise jet candidates	0 (using the requirements from Table ??)		
$ au_{ m h}$ candidates	$\mathrm{N_{ au_{h}}}=0$ with $p_\mathrm{T}>20\mathrm{GeV}$, $ \eta <2.3$		
b quark jet	$N_{jet} = 0$ with $p_T > 20$ GeV, DeepCSV Medium		
$\eta_{i1}\eta_{j2}$	<0		
$ \Delta \eta_{ii} $	>1		
Electrons (muons)	${ m N_{e,\mu}} = 0 ext{ with } p_{ m T} > 10 ext{ GeV}$, $ \eta < 2.5 (2.4)$		
Photons	$N_{\gamma} = 0$ with $p_{T} > 15$ GeV, $ \eta < 2.5$		

Inelastic DM search

Two important quantities to consider in exploring iDM parameter space:

$$y \equiv \epsilon^2 \alpha_D \left(\frac{m_1}{m_{A'}}\right)^4 \propto \langle \sigma v \rangle$$

- Determines relic density
- Need to ensure consistency with cosmological observations

$$\Gamma_{\chi_2} = \frac{4\epsilon^2 \alpha \alpha_D \Delta^5}{15\pi m_{A'}^4}$$

- Lifetime of heavier DM particle
- Small mass splitting Δ and kinetic mixing can give χ_2 a macroscopic lifetime

CMS

Inelastic DM search-Event selection

from A. Frankenthal's talk at UCLA DM 2023 Jeongeun Lee (SNU), 11-16 Sep 2023

Inelastic DM - Comparison with theory

- Depending on mass splitting, can probe an unexplored and relic density-consistent range of parameter space!
- Sensitivity to <u>heavier dark matter</u> compared to direct detection experiments, lepton colliders, and fixed-target experiments
 Constitution better there are extention given a helf of detects
- Sensitivity better than expectation given ~ half of dataset

2305.11649

DM Searches

picture made by <u>danyer.perez.adan@cern.ch</u>

Jeongeun Lee (SNU), 11-16 Sep 2023