Searches for new physics in the Higgs sector with the ATLAS detector

Moving beyond with the Higgs

- More than just h₁₂₅
- Exotic Higgs decays
- Exploring more than one Higgs at a time

Pixel detector LAr electromagnetic calorimeters Transition radiation tracker

Gustavo Otero y Garzón – On Behalf of the ATLAS Collaboration University of Buenos Aires, Argentina

TeVPA 2023

A paradigm of new Physics

- 11 years after discovery, that scalar looks pretty much like the SM Higgs boson
 - Major branching fractions observed
 - Properties do not show obvious anomalies

- Yet, important phenomena are not described by the SM
 - Exotic decays and extended Higgs sector could reveal new physics
 - Still, Br(*H*→inv) < 10%!</p>

2

Making more of the Higgs

- Why only one h₁₂₅? Many extensions of the SM predict additional Higgs bosons
 - Electroweak singlets: H
 - Two Higgs Doublet Models (2HDM): h, H (CP-even), A (CP-odd), H[±]
 - Three Higgs Doublet Models (3HDM): 3 CP-even, 2 CP-odd neutral bosons, 2 charged ones
 - Georgi-Machacek model (GM): *H*, triplet and quintet
- Exotic decays could reveal new physics
 - Portal to dark/hidden sectors
- Main single-Higgs production channels do not give the full picture
 - Di-Higgs production predicted, unique sensitivity to anomalous couplings

Will highlight a small set of recent results indicating the directions of experimental exploration

Neutral BSM Higgs boson searches

Low-mass $X \rightarrow \gamma \gamma$

ATLAS-CONF-2023-035

- Search for light scalar $X \rightarrow \gamma \gamma$ (m_H<125 GeV)
 - 2.9σ excess at 95 GeV reported by CMS (<u>CMS PAS HIG-20-002</u>)
- Several categories defined based on photon conversion status for a model-independent search
 - CC: two converted photons
 - UU: two unconverted photons
 - UC: One converted photon

 Additional Boosted Decision Tree(BDT) discrimination to separate signal in a modeldependent search using SM-like Higgs boson as benchmark (to compare to CMS)

Low-mass $X \rightarrow \gamma \gamma$

- Fit diphoton invariant mass
 - Double sided crystal ball for Drell-Yan, exponentiated polynomials for non-resonant background
 - Search dominated by non-resonant background modeling uncertainties

Model dependent results

- No significant excess observed
 - Local 1.7 σ excess at 95 GeV in the model dependent search
 - Local 2.2 σ excess at 72 GeV in the model independent search

High-mass $X \rightarrow Z\gamma$

----- Expected

2000

2500

Observed

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

3000

 m_{χ} [GeV]

3500

- Search for heavy narrow resonances (220 GeV $< m_X < 3.4$ TeV)
 - $\mathbf{Z} \rightarrow \mathbf{ee} / \mu \mu$
 - Spin 0: ggF, spin 2: ggF and qq $\rightarrow X$
 - Dominant background: non-resonant $Z\gamma$ and Z+jets modeled with analytical functions
 - **Custom BDT based electron ID**

Charged Higgs searches

Charged Higgs search $H^{\pm} \rightarrow cb$

arXiv:2302.11739 (accepted by JHEP)

• 3HDM predicts 2 charged Higgs bosons

 Lightest one lighter than the top quark (m(H[±]) 60 - 160 GeV)

- Categories based on number of jets and b-jets
- Use mass parametrized NN (29 inputs)
- Fit NN scores in SRs and total yields in CRs

Charged Higgs search $H^{\pm} \rightarrow cb$

- No significant excess observed
 - Upper limits on BR of 15 42% in $60 < m_{H\pm} < 160$ compared to 3HDM predictions
 - 3σ local (2.5σ global) excess at m_{H±}= 130 GeV
 - x5 improvement in sensitivity compared to only existing CMS result before this

Invisible Higgs decays

Invisible Higgs decays

- Within the SM the BR($H \rightarrow inv$) = 0.1% ($H \rightarrow ZZ^* \rightarrow 4v$)
- Higgs portal is a benchmark Dark Matter model
 - Dark matter may acquire mass through interaction with the SM Higgs
 - Decays to DM are invisible at the LHC

Combination of invisible Higgs searches

Phys. Lett. B 842 (2023) 137963

Higgs portal to Dark Matter

Convert observed Br($H \rightarrow inv$) limit into a limit on spin independent $\sigma_{WIMP-nucleon}$

- Complementary sensitivity between direct detection experiments and collider searches

Phys. Lett. B 842 (2023) 137963

Search for hh production

Two Higgs are better than one

• In the SM, Higgs pair production is driven by its self coupling λ_{HHH} which plays a crucial role in EWSB

- Predicted σ_{HH} much smaller than single Higgs production
- New physics can produce resonant Higgs pair production and/or enhance DiHiggs rates
- Main production processes are ggF and VBF, dominant final states: bb+bb/ $\tau\tau$ / $\gamma\gamma$

hh combination

Phys.Lett.B 843 (2023) 137745

Getting closer to SM cross section

h+hh combination

Phys.Lett.B 843 (2023) 137745

- Universal correction $0(\kappa_{\lambda}^2)$

 $- 0(\kappa_{\lambda})$: both process and kinematics dependent

• Simplified template cross section results are parametrized as a function of $(\kappa_{\lambda}, \kappa_m)$ with κ_m the other coupling modifier $(\kappa_V, \kappa_t, \kappa_b, \kappa_\tau)$

$$n_{i,f}^{\text{signal}}(\kappa_{\lambda},\kappa_{m}) \propto \mu_{i}(\kappa_{\lambda},\kappa_{m}) \times \mu_{f}(\kappa_{\lambda},\kappa_{m}) \times \sigma_{\text{SM},i} \times \text{BR}_{\text{SM},f} \times (\epsilon \times A)_{if}$$
production
decay

h+hh combination

Phys.Lett.B 843 (2023) 137745

- Combination provides the strongest constraints to date on κ_{λ}
 - More sensitive and less model-dependent results
 - Single Higgs and HH combination produce stronger constraints (κ_{λ} , κ_t) plane
 - $-\kappa_{\lambda}$ limits obtained in a variety of combination assumptions

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single-H combination	$-4.0 < \kappa_{\lambda} < 10.3$	$-5.2 < \kappa_{\lambda} < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_{\lambda} < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
$HH+H$ combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_{\lambda} < 6.1$	$-2.2 < \kappa_{\lambda} < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

In conclusion

- Have shown selected highlights of ATLAS BSM Higgs searches
 - Many more results in <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
 - Extensive search program with full Run 2 data, Run 3 coming

Pushing the limits of our understanding of possible BSM in the Higgs sector

- Large diversity of new ideas and techniques developed for these searches
- No sign of new physics yet
- Strong limits set on a large variety of final states
- Local excesses seen need to be investigated

ATLAS iPhage Keeps Searching..

