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Non-helical tracks are the smoking gun signature of charged and for colored quirks, which are pairs
of particles bound by a new, long-range confining force. We propose a method to efficiently search
for these non-helical tracks at the LHC, without the need to fit their trajectories. We show that the
hits corresponding to quirky trajectories can be selected efficiently by searching for co-planar hits
in the inner layers of the ATLAS and CMS trackers, even in the presence of on average 50 pile-up
vertices. We further argue that backgrounds from photon conversions and unassociated pile-up hits
can be removed almost entirely, while maintaining a signal reconstruction efficiency as high as ~70%.
With the 300 fb~" dataset, this implies a discovery potential for string tension between 100 eV and
30 keV. and colored (electroweak charged) quirks as heavy as 1600 (650) GeV may be discovered.
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What can we learn 22 e TUT

about Dark QCD (dQCD) at colliders?

. o
qurks | | A<mg <3 4
Quirky Composite Dark Matter, G.D. Kribs et al. (2009), ]
Macroscopic Strings and ,Quirks*” at Colliders, J. Kang and M. A. Luty (2009) ('
M

Tracking down quirks at the Large Hadron Collider, S. Knapen et al. (2017)
Constraining Quirky Tracks with Conventional Searches, M. Farina et al. (2017)

Emerging/semivisible jets, dark showers,

Long Lived Particles (LLPS)

Emerging Jets, P. Schwaller, D. Stolarski and A. Weiler (2015)
Semivisible Jets: Dark Matter Undercover at the LHC, T. Cohen et al. (2015)

Jet Substructure from Dark Sector Showers, T. Cohen et al. (2020)

Dark vector mesons at LHC forward detector searches, T. Kuwahara et al. (2023)

me <A< 5

Soft Unclustered Energy Patterns (SUEPS, or soft bombs)
Triggering soft bombs at the LHC, S. Knapen et al. (2017)
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mmmmnlp- rich phenomenology!
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Lagrangian of a dark SU(N ) gauge theory with heavy quarks (mQ > A

General Setup

dQCD), which can be

charged under the SM or as well be SM singlets.
l a L Nf— . . -
Liqcp = _Qtr (Ga G+ Qa (?, (f? — 39;!@;1) - '?f'f-(,g,f,-z) Qu
i—1

Gauge groups SO(N) and Sp(2N) have also been considered in the literature
Accidental Composite Dark Matter, O. Antipin et al. (2015)
Low-enegy effective description of dark Sp(4) theories, S. Kulkarni et al. (2022)

Confinement scale /\GIQCD is identified with the one-loop Landau pole

27 11N; — 2Ng
Bo =

Cam(z) 8

Adqen

aq(mq)

If no other portal to the SM is included, confinement scale and quark mass(es) fix all the free
parameters of the theory.

Dark baryon number and dark species number are accidental global symmetries that ensure
stability of dark hadrons.
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Baryons made of N dark quarks — DM candidate.

Particle spectrum

Stable up to dlmenS|on 3/2*(N, + 1) operators for SU(N  odd) (fermionic DM).
and stable up to dimension (3/2*N _ + 2) operators for SU(N  even) (bosonic DM).
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Baryons made of N dark quarks — DM candidate. |
Stable up to dimension 3/2%(N + 1) operators for SU(N, odd) (fermionic DM). ‘ %@@
and stable up to dimension (3/2*N _ + 2) operators for SU(N  even) (bosonic DM).

Particle spectrum

Mesons made of quark-antiquark: Stable against a decay into the SM up to dimension 5.
Without accidental symmetries (G-parity, flavour conservation) protecting them, they decay
quickly into glueballs. /e @
Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Y. Hochberg et al. (2015) \Q@'ﬂ//
A Theory of Dark Pions, H.C. Cheng et al. (2022) -
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Baryons made of N dark quarks — DM candidate.
Stable up to dimension 3/2*(N  + 1) operators for SU(N  odd) (fermionic DM). ‘ %ﬁ
and stable up to dimension (3/2*N _ + 2) operators for SU(N  even) (bosonic DM).

Particle spectrum

Mesons made of quark-antiquark: Stable against a decay into the SM up to dimension 5.
Without accidental symmetries (G-parity, flavour conservation) protecting them, they decay

quickly into glueballs. ( @
Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Y. Hochberg et al. (2015) \W’
A Theory of Dark Pions, H.C. Cheng et al. (2022) -

Glueballs (GBs) as the lightest hadrons in the heavy quark case. Stable up to dimension

Pure glue thermal dark matter is excluded by overclosure.

Hidden SU(N) glueball dark matter, A. Soni and Y. Zhang (2016)

Non-Abelian Dark Forces and the Relic Densities of Dark Glueballs, L. Forestell et al. (2017)
Glueball dark matter, precisely, P. Carenza et al. (2023)

Martin Napetschnig (TUM) | Dark QCD with Heavy Quarks | TeVPA 2023 5/18



Dark Matter

M SFB 1258
2023

Particle spectrum
Baryons made of N dark quarks — DM candidate. /.@.
Stable up to dimension 3/2*(N _ + 1) operators for SU(N  odd) (fermionic DM). ‘ %%@

and stable up to dimension (3/2*N _ + 2) operators for SU(N  even) (bosonic DM).

Mesons made of quark-antiquark: Stable against a decay into the SM up to dimension 5.
Without accidental symmetries (G-parity, flavour conservation) protecting them, they decay

quickly into glueballs. . Q
Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Y. Hochberg et al. (2015) ‘QCQJZ/
A Theory of Dark Pions, H.C. Cheng et al. (2022)

Glueballs (GBs) as the lightest hadrons in the heavy quark case. Stable up to dimension

Pure glue thermal dark matter is excluded by overclosure.

Hidden SU(N) glueball dark matter, A. Soni and Y. Zhang (2016)

Non-Abelian Dark Forces and the Relic Densities of Dark Glueballs, L. Forestell et al. (2017)
Glueball dark matter, precisely, P. Carenza et al. (2023)

Dark nuclei: If a light mediator is added to the model, dark nucle .-~ 1esis is feasible.
Big Bang Darkleosynthesis, G. Krnjaic and K. Sigurdson (2014) '-. "
Dark Nuclei | & I, W. Detmold et al. (2014) w

g Bang Synihes clear Dark Matter. E. Hard (2014
Martin getgchn?g' TUI\’/I\$U| Bark GED with Heavy Quarks | VPR2023 5 /18
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L oy A (s (A -
The basic Lagrangianis ~ Ldqcp = —Qtr (Ga,wGy") + 3 Qu (’ff (@ - ""gd@d) - ""”-ceuf,-z) Qu
i=1

We study two different portals to the SM:

1) Gauge portal: N_= 1 dark quark flavour V as a weak isospin triplet similar to wino DM (two
free parameters only).

Line = igwy" Qa - (Wy x Qa)

2) Higgs portal: N_ = 2 dark flavours: one isospin doublet quark L (similar to Higgsino DM) +
one (lighter) SM singlet quark N (four free parameters: {mN, AdQCD, y,m}).

Low=gw LWL + (yyLHN + hc.)

Further options considered in the literature:

Z‘ mediator with/without kinetic mixing

Aidnogenesis via Leptogenesis and Dark Sphalerons, M. Blennow et al. (2010)
Glueballs in a Thermal Squeezeout Model, P. Asadi et al. (2022)

Dark scalar as a bifundamental mediator

Emerging Jets, P. Schwaller, D. Stolarski and A. Weiler (2015)
Martin Napetschnig (TUM) | Dark QCD with Heavy Quarks | TeVPA 2023 6/18



Thermal History
of dark QCD

Confining phase transition happens
before or after dark matter (chemical)
freeze-out — Both processes reduce
the dark matter abundance.

After confinement, the lightest dark
sector particles are non-relativistic
GBs and the thermal contact with the
SM bath is lost -~ the dark sector
has it‘'s own temperature evolution
and is hotter than the SM leading to
an early matter dominated period!

At late times, the decay of GBs leads
to a washout of the DM density —
Third process that depletes the DM
density.
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Thermal history of composite dark matter, N. A. Dondi et al. (2020)
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Squeezeout of

Dark Matter %

It has been found that in the case of a first order confining phase transition with heavy
quarks, the phase transition drastically depletes the dark matter abundance via the

squeezeout effect.

Accidentally Asymmetric Dark Matter, P. Asadi et al. (2021)
Thermal Squeezeout of Dark Matter, P.Asadi et al. (2022)
Glueballs in a Thermal Squeezeout Model, P. Asadi et al. (2022)

Messengers .
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Squeezeout of
Dark Matter

squeezeout effect.

Accidentally Asymmetric Dark Matter, P. Asadi et al. (2021)
Thermal Squeezeout of Dark Matter, P. Asadi et al. (2022)
Glueballs in a Thermal Squeezeout Model, P. Asadi et al. (2022)

=2

Confined Phase ' Deconfined Phase

202%

Neutrinos
Dark Matter
Messengers

Confined Phase ' Deconfined Phase

~ TLTI

It has been found that in the case of a first order confining phase transition with heavy
quarks, the phase transition drastically depletes the dark matter abundance via the

Confined Phase

B v

Deconfined Phase

Heavy fundamental quarks can not enter the confined-phase bubble since colour string
breaking is exponentially suppressed. Only a statistical excess fraction of /N,”“* quarks in
the deconfined pockets survives the phase transition —» dramatic decrease of the dark

matter abundance!
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Phase transitions:
Lattice QCD as a tool

Dark matter relic abundance depends
crucially on whether
the phase transition is first order.
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Phase transitions:
Lattice QCD as a tool

Dark matter relic abundance depends
crucially on whether
the phase transition is first order.

In SU(3), we can use the Columbia

plot and lattice data

to find the transition from the (weak)
1° order phase transition to a
Crossovetr.
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On the existence of a phase

transition for QCD with three
light quarks, F. R. Brown et al.
(1990)
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Phase transitions:
Lattice QCD as a tool

Dark matter relic abundance depends
crucially on whether
the phase transition is first order.

In SU(3), we can use the Columbia

plot and lattice data

to find the transition from the (weak)
1° order phase transition to a
Crossovetr.

Recent results indicate that the
critical ratio is given by

e <10

m~J

AdaqceD / et
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- N2 PURE
Jst - [GAUGE

s nd
nd 2" order
2 order Z(2)

0(4)

hysicsl point
physical po N3

. My,d
On the existence of a phase

transition for QCD with three
light quarks, F. R. Brown et al.
(1990)

The QCD Deconfinement Critical Point for N, = 2 Flavours of Staggered
Fermions, R. Kaiser et al. (2022)

Phase structure of QCD for heavy quarks, C. S. Fischer et al. (2015)

Phase structure of finite temperature QCD in the heavy quark region,
H. Saito et al. (2011)
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Thermal History
for Heavy Quarks
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Do pre-confinement
bound states matter?

Dark Matter
2023 Messengers .

We have shown that the squeezeout
applies not only to the parameter
space treated so far in the literature,
but applies over the entire
Coulombic regime (down to
mQ/I\dQCD ~ 10)
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the phase transition, squeezeout
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Summary

Dark QCD models are an interesting DM scenario with an intriguing thermal history and
peculiar experimental signatures.
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Summary

Dark QCD models are an interesting DM scenario with an intriguing thermal history and
peculiar experimental signatures.

Phenomenology strongly depends on the hierarchy between mq and Agqco.

In models with heavy quarks, the DM density gets heavily depleted due to the squeezeout
mechanism leading to very high DM masses (PeV instead of TeV). Yet we may constrain
parameter space with current data.
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Thank you for your attention

Martin Napetschnig | Project D02 | SFB General Meeting 2023 15/18




Dark Matter
202% Messengers .

Backup Slides

Martin Napetschnig (TUM) | Dark QCD with Heavy Quarks | TeVPA 2023 16/18



Dark Matter
Messengers

m SFB 1258
2023

Baryon — Antibaryon interactions

X

It has been argued in the literature, that heavy baryons / ‘%\ fnx}

annihilate in a rearrangement process into

|,.l

three mesons. Ly
The relic abundance of long-lived heavy coloured relics, B l& 5, " sM
J. Kang et al. (2008) a
Baryon freeze-out
Dark Matter as a weakly coupled Dark Baryon, A. (rearrangement cascade)

Mitridate et al. (2017)

Dark Quarkonium formation in the Early Universe, M.
Geller et al. (2018)

Cross Section is strongly enhanced:

4?TR23

a =

B-B Ekin
Ep

P S 8NN, dm
zZUrel ~ = /
B B C FOq m2 . .
Q Thermal history of composite dark matter ,

N. A. Dondi et al. (2020)
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A E

Toy model for interaction via the Cornell continuumn

. S
potent[al linear potential —— —— = = «
a,i' n2 AB e Mag, — [ T - .
Veg(r) = —— +or + = — = =
eff( ) 2,!.)1?"2, e e— g
9 —1— — el
o~ A » PB = a’fﬂ'? EB T Oﬂ! K Coulombic potential _.,./”7&
AE ~ adopm > Ama ~T T
>4
. i

Three regimes of masses: K .

0 3. 1!2 é s I Lnlmx "

The Relic Abundance of Long-Lived Heavy
Colored Particles, J.Kang et al. (2008)
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Strongly and weakly
coupled dark baryons

M SFB 1258 | Neutrinos m
Dark Matter
2023 Messengers .

A E
Toy model for interaction via the Cornell continuum
. =
potent[al linear potential —— —— == —— “«
I ’."?,2 AE € Ay T — — ——
A =—— +4or -+ — __— __
ett() TR 2ur?’ T- T
o~ A » PB= a:fﬂ'? EB r (IL?ILL Coulombic potentia _./”7-/
AE ~ adcpm > Anad 7&
Three regimes of masses: »
* Weakly coupled/Coulomb regime: >
/\dQCD < EB < Pg The Relic Abundance of Long-Lived Heavy

. . Colored Particles, J.Kang et al. (2008
Coulomb term dominates the potential. o (2008)
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coupled dark baryons
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A E

Toy model for interaction via the Cornell contimum
pOtentIaI linear potential
p n? AE < Apaa

Coulombic potentia
AR ~ &écp'm. = Apa

Three regimes of masses:
* Weakly coupled/Coulomb regime:
N <E < P,

dQCD B
Coulomb term dominates the potential.

N
0 l 2 3 T L‘max

The Relic Abundance of Long-Lived Heavy
Colored Particles, J.Kang et al. (2008)

e Intermediate regime:
E <A <p,

B dQCD
Coulomb term dominates, but baryons
form in excited states due to the high
temperature during confinement.
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Toy model for interaction via the Cornell contimum
pOtentIaI linear potential | ——
p n2 AE < "'\hatl
Vegg(r) = —— +or + opr?’

Coulombic potentia
AR ~ &écp'm. = Apa

Three regimes of masses:
* Weakly coupled/Coulomb regime:

S~
0 1 2 3 Eiias
/\dQCD = EB <Pg The Relic Abundance of Long-Lived Heavy

. . Colored Particles, J.Kang et al. (2008
Coulomb term dominates the potential. ° (2008)

e Intermediate regime:
E <A <p,

B dQCD
Coulomb term dominates, but baryons
form in excited states due to the high
temperature during confinement.

e Strongly coupled/string dominated regime:
E,.<p,< A

dQCD
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Toy model for interaction via the Cornell contimum
pOtentIaI linear potential
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* Weakly coupled/Coulomb regime:
N <E < P,

dQCD B
Coulomb term dominates the potential.

Heavy Quark Regimes: SU(3)

(

) 1

The Relic Abundance of Long-Lived Heavy
Colored Particles, J.Kang et al. (2008)

e Intermediate regime:
E <A <p,

B dQCD
Q 104 ¢

Coulomb term dominates, but baryons \

form in excited states due to the high
temperature during confinement.

Al GeV

e Strongly coupled/string dominated regime:
E,.<p,< A

dQCD
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