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WIMP DM

annihilation 

DM

DM

SM

SM

E.W.Kolb, M.S.Turner, 
The Early Universe, `89

• DM decouples from thermal bath and “freeze-out” 

• Electro-Weak [EW] coupling and mass can explain relic density

• realized in many BSM models including supersymmetry [SUSY] 
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Direct detection 

• null results in direct detections 

• many interested parameter space has been excluded 
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PDG2014

SM

SMDM

DM

annihilation

scattering

𝜎scat ∼ 𝜎ann



Co-annihilating DM 

➢ If 𝑚𝜒0 ≃ 𝑚𝜒±
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𝜒0 SM

SM

SM

SM

𝜒0: DM,  𝜒±: new particle 

𝜒0

𝜒0

𝜒±

“co-annihilation” 𝜒0𝜒± →  SM2 turns on during freeze-out 

𝜎ann ≫ 𝜎scat effectively due to co-annihilation

avoid direct detection limits 



Higgsino 

➢ Supersymmetry [SUSY]
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• solve hierarchy problem

• GUT/superstring

• Higgs potential 

• neutralino DM  

➢ Higgsino 

• fermionic superpartners of Higgs bosons

• neutral component is a part of neutralino DM  

*mixture of gaugino/higgsino



Higgsino 
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➢ Origin of EW scale

there are two Higgs doublets in Minimal SUSY SM [MSSM]

• two neutral states: 𝜒1
0, 𝜒2

0 and two charged states 𝜒1
±

• the lightest state 𝜒1
0 can be DM 

• mass differences are typically less than few GeV 

co-annihilation DM  

➢ Co-annihilating DM

𝑚𝑍
2 ∼ −2 𝜇 2 − 2𝑚𝐻𝑢 

2

𝑚𝑍 = 91.2 GeV, 

𝜇: Higgsino mass, 

𝑚𝐻𝑢
: Higgs mass term

understanding the origin of EW scale !

✓  direct detection



Outline
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1. Introduction 

2. Higgsino searches at LHC 

3. Mono-Z/W signal  

4. Summary 



Mono-jet search for DM
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➢ mono-jet 1𝑗 + 𝐸𝑇
miss signal

annihilation 

SM= 𝑝, 𝑒

SM= 𝑝, 𝑒

DM

DM

production at collider 

• DM may be produced at collider

• However, DM is invisible 

SM= 𝑝

SM= 𝑝

DM

DM

𝑞, 𝑔 → jet: 𝑗

𝐸𝑇
miss ∼ | − Ԧ𝑝𝑇

𝑗
|

• jet from initial state radiation [ISR]

• suffered from large bkg. 

• no limits on Higgsinos at LHC  



Higgsino search: higgsino decays
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➢ decays of heavier higgsinos: 𝜒2
0, 𝜒1

±

• productions of heavier states are expected 

• daughter particles are “soft” due to small mass diff.  

𝜒2
0 𝜒1

0

ℓ+

ℓ−
𝑍∗

𝜒1
± 𝜒1

0

𝑓′

𝑓𝑊±∗

➢ mass differences of higgsinos 

Δ𝑚𝜒2
0: = 𝑚𝜒2

0 − 𝑚𝜒1
0

Δ𝑚𝜒1
±: = 𝑚𝜒1

± − 𝑚𝜒1
0

Δ𝑚𝜒2
0 ∼ 2Δ𝑚𝜒1

± ∼ 2.1 GeV ×
4 TeV

𝑀wino



Higgsino search: current limits
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• limits are at most 200 GeV 

• no limits for 𝑚𝜒 ≳ 100 GeV from LHC for Δ𝑚𝜒1
± ∼ 1 GeV

soft leptons disappearing track

𝑚𝜒 ≳ 100 GeV limits

 for Δ𝑚𝜒1
± ∼ Δ𝑚𝜒2

0/2 ≳ 1.3 GeV  for Δ𝑚𝜒1
± ≲ 0.35 GeV



Higgsino search: future limits

12

• limits are at most about 300 GeV at HL-LHC

• limits are ∼ 100 GeV for Δ𝑚𝜒1
± ∼ 1 GeV, the gap remains

soft leptons soft displaced vertex

2109.14030, Baer, Barger, Sengupta, Tata

1910.08065, Fukuda, Nagata, Oide, Otono, Shirai



Brief summary
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• generic mono-jet search is not efficient for higgsinos 

• soft leptons are available for relatively large mass diffs. Δ𝑚𝜒1
± ≳ 3 GeV

• disappearing tracks are available for very small mass diffs. Δ𝑚𝜒1
± ≲ 0.8 GeV

• there is a gap at Δ𝑚𝜒1
± ∼ 1 GeV corresponding to 𝑀wino ∼ 4 TeV

• known searches basically require ISR jet

 



Outline
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1. Introduction 

2. Higgsino searches at LHC 

3. Mono-Z/W signal  

4. Summary 



mono-Z/W signal 
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➢ mono-V

𝑝

𝑝 𝜒1,2
0 , 𝜒1

±

𝑉 = 𝑍, 𝑊±

what if we use Z/W boson instead of jet ?  

✓ less production cross section 

⚫ (much) less backgrounds

➢ leptonic mono-Z

𝑝

𝑝

𝑍 → ℓ+ℓ−

𝜒1,2
0 , 𝜒1

±

𝜒1,2
0 , 𝜒1

±

𝜒1,2
0 , 𝜒1

±



mono-Z/W signal 
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➢ mono-V

𝑝

𝑝 𝜒1,2
0 , 𝜒1

±

𝑉 = 𝑍, 𝑊±

✓ less production cross section 

⚫ (much) less backgrounds

➢ leptonic mono-Z

𝑝

𝑝

𝑍 → ℓ+ℓ−

𝜒1,2
0 , 𝜒1

±

𝜒1,2
0 , 𝜒1

±

𝜒1,2
0 , 𝜒1

±

✓ limit is about 190 GeV at HL-LHC 

✓ not large production x-section 

1407.1833, Anandakrichnan, Carpenter, Raby

what if we use Z/W boson instead of jet ?  



mono-Z/W signal 
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➢ hadronic mono-V

𝑝

𝑝 𝜒1,2
0 , 𝜒1

±

𝑉 → 𝑞𝑞

𝜒1,2
0 , 𝜒1

±

production cross section

• W associated production is much larger than prod. with Z

• hadronic BRs ∼ 70% are larger than leptonic BRs ∼ 10 30 % for Z (W)  

significantly large production rate 

𝑉 = 𝑍, 𝑊±



mono-Z/W signal 
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➢ bkg. for 𝑗 + 𝐸𝑇
miss

are backgrounds small ? 

➢ bkg. for 𝑉ℎ𝑎𝑑 + 𝐸𝑇
miss

𝑝

𝑝 𝑗

𝑍 → 𝜈𝜈 or 𝑊 → ℓ𝜈

𝑗

𝑗

• V+jets is dominant bkg.

• topologically same signal

𝑝

𝑝 𝑗

𝑍 → 𝜈𝜈 or 𝑊 → ℓ𝜈

𝑗

𝑗
} fake 𝑉ℎ𝑎𝑑

• V+jets is dominant bkg. (≫ diboson)

• 𝑉ℎ𝑎𝑑 should be found from jets

𝑉 = 𝑍, 𝑊±

ATLAS-PHYS-PUB-2015-033
𝑉ℎ𝑎𝑑-tag efficiency ∼ 50% (1.7%) for true W/Z jets (QCD jets)  

well discriminate signal/bkg.  



Results
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• even LHC constraints 110 (210) GeV higgsinos at Run-2 (3)

• HL-LHC can probe higgsinos up to 520 GeV 

* using 𝐸𝑇
miss-binned data

recast ATLAS analysis w/ 36.1 fb−1data 1807.11471, ATLAS

MadGraph, Pythia, Delphes



Results: 𝜇-𝑀2 plane
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139 fb expected mono-V excl. at HLLHC

trilepton



Results: 𝜇-𝑀2 plane
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139 fb exp. mono-V excl. at HLLHC

trilepton

pure higgsino region

mono-V is most important for pure higgsino region



Summary
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• hadronic mono-V signal is efficient for higgsinos searches

• can fill the gap at Δ𝑚𝜒1
± ∼ 1 GeV

• can test higgsinos up to 520 GeV at HL-LHC 

➢ higgsino search 

➢ discussions

• V + soft leptons/disappearing tracks may work for higgsinos 

• applicable to other DM particles

Thank you !     



backups
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Analysis 
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➢ Recast ATLAS analysis w/ 36.1 fb−1data

• one 𝑉ℎ𝑎𝑑 jet with 𝑝𝑇 > 250 GeV and 𝐸𝑇
miss > 200 GeV

• 50% efficiency for 𝑉had tagging 

• cuts for multi jet bkg. are applied 

• leptons with 𝑝𝑇 > 7 GeV are vetoed 

1807.11471, ATLAS

➢ Assumptions 

• all of higgsino states 𝜒1,2
0 , 𝜒1

± are invisible

• large R jet from Z/W is V-tagged with 50% efficienty

• events simulated by Madgraph5, pythia8 and Delphes

• only uncertainties in backgrounds are taken into account   

𝛥𝑚𝜒1
± ≲ 3.5 GeV



𝐸𝑇
miss distribution
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• signals are 𝒪 0.1 − 1%  of the SM bkg. 

• higher 𝐸𝑇
miss is expected for heavier masses 

𝐸𝑇
miss distribution

efficiency = 
# pass the cuts/# events generated  



Higgsino search: soft leptons
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➢ 𝑗 + ℓ+ℓ− + 𝐸𝑇
miss

di-leptons are visible

if Δ𝑚𝜒2
0 ≳ 10 GeV

𝜒2
0 𝜒1

0

ℓ+

ℓ−
𝑍∗

𝑝 𝜒2
0 → 𝜒1

0ℓ+ℓ−

𝑝 𝜒1
0, 𝜒1

±

𝑗

• productions 𝑝𝑝 → 𝜒2
0𝜒1

0, 𝜒2
0𝜒1

±

• ISR jet is necessary to trigger

• 𝑚ℓ+ℓ−
2 < 10 GeV cut is effective  

1401.1235 Han, Kribs, Martin Menon

1409.7058, Baer, Mustafayev, Tata



Higgsino search: disappearing tracks
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➢ disappearing track search 

• charged track disappear in detector

• ISR jet is required to trigger 

𝜒1
± 𝜒1

0

𝑓′

𝑓𝑊±∗ charged state 𝜒1
± is long-lived 

if Δ𝑚𝜒1
± ∼ 𝒪(100 MeV)

1703.09675, Fukuda, Nagatam Otono, Shirai

0610277 Ibe, Moroi, Yanagida 
1703.05327 Mahbubani, Schwaller, Zurita
1703.09675 Fukuda, Nagata, Otono, Shirai

flight length of 𝒪(cm)



𝑉ℎ𝑎𝑑 tagging 
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ATLAS-PHYS-PUB-2015-033

tagging by jet mass 𝑚𝐽 ∼ 90 GeV and 𝐷2 

V-tag rate from Z/W

∼ 50 % (med.)

V-tag rate from jets

∼ 60−1 ∼ 1.7 % (med.)



𝑉ℎ𝑎𝑑 jet and  𝐷2
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𝑗

𝑗
large-R (= 1.0) jet: 𝐽}𝑉

mass of large R jet :𝑚𝐽 should be around 𝑚𝑉 ∼ 90 GeV

➢ 𝐷2 = Τ𝑒3 𝑒2
3

𝑒2 =
1

𝑝𝑇𝐽
2 

𝑖<𝑗≤𝑛𝑗

𝑝𝑇𝑖𝑝𝑇𝑗 𝑅𝑖𝑗 𝑒3 =
1

𝑝𝑇𝐽
3 

𝑖<𝑗<𝑘≤𝑛𝑗

𝑝𝑇𝑖𝑝𝑇𝑗𝑝𝑇𝑘  𝑅𝑖𝑗𝑅𝑖𝑘𝑅𝑗𝑘

• 𝑒2, 𝑒3 are smaller when more soft/collinear pair exists 

• 𝑒3 ≪ 𝑒2 is expected for 𝑉ℎ𝑎𝑑 since there two hard jets



mono-jet bounds 
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1504.02472, Barducci, Belyaev, Bharucha, Porod, Sanz  

limits about 250 GeV at HL-LHC



backgrounds 
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➢ number of events
1807.11471, ATALS



Statistics 
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test statistics 

likelihood

CLs and significances

𝑛𝑖: # data,  𝑠𝑖: # signal, 𝑏𝑖: # bkg.

ATLAS, CMS and LHC Higgs Combination  Group Collab.
“Procedure for the Higgs boson search combination in Summer 2011”

𝜆𝑖 = 𝑠𝑖𝜇 + 𝑏𝑖
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