

# Asymmetries in Extended Dark Sectors: A Cogenesis Scenario

Juan Herrero-García, GL, Drona Vatsyayan

[2301.13238]

**Giacomo Landini** 



14/09/2023







Dark Matter is five times more abundant than baryonic matter



 $\rho_{\rm DM} \simeq 5 \rho_B$ 

Cosmic coincidence

• A common origin for baryons and DM?

# **Standard (symmetric) production**

**Freeze-out**: DM is in thermal equilibrium with the SM



**Freeze-in**: DM is **not** in thermal equilibrium with the SM



#### Dark Matter is symmetric (?)

 $Y_{\chi} = Y_{\bar{\chi}}$ 

#### **Asymmetric Dark Matter**

The Baryon abundance is set by an asymmetry  $\eta_B = Y_b - Y_{\overline{b}} = 0.88 \times 10^{-11}$ 

The nature of DM could also be asymmetric!

,

$$\eta_D = Y_\chi - Y_{\bar{\chi}}$$

$$\frac{\rho_{\rm DM}}{\rho_B} = \frac{m_{\rm DM}\eta_D}{m_p\eta_B} \simeq 5$$

Attractive scenario:  $\eta_D \simeq \eta_B \longrightarrow m_{\rm DM} \simeq 5 m_p \simeq 5 \text{ GeV}$ 

Asymmetry and Fractional asymmetry

 $\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$ 

Asymmetry generation



Asymmetry and Fractional asymmetry

 $\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$ 



Asymmetry and Fractional asymmetry

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$$



7

Asymmetry and Fractional asymmetry

 $\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$ 



# **Asymmetric freeze-in?**

Asymmetry and Fractional asymmetry

 $\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$ 



Asymmetric DM out of equilibrium (tiny couplings, freeze-in) ? (How to erase the symmetric component?)

9

# **Asymmetric freeze-in?**

Asymmetry and Fractional asymmetry

 $\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$ 



Idea: late decays of an asymmetric species after symmetric population has been erased<sup>10</sup>

### **Early vs Late decays**



### **Early vs Late decays**



# A Cogenesis scenario

Falkowski, Ruderman, Volansky [1101.4936]



Dark asymmetry generation

 $\eta_{\chi} = \eta_S \sim \eta_B$ 

 $\bar{\chi}\chi$ ,  $S^{\dagger}S$ annihilations erase symmetric components

# A Cogenesis scenario



# A Cogenesis scenario



This scenario can explain neutrino masses, baryon asymmetry and (FIMP) Dark Matter!



Neutrino masses  $M_{N_1} \propto \langle \sigma \rangle = v_{B-L} \longrightarrow m_{\nu} = -m_D M_N^{-1} m_D^T$ 

16



 $S \to \bar{\psi} + \bar{\nu}$  or  $\psi \to S^{\dagger} + \nu$  are allowed but suppressed

Both cosmologically stable

**Multicomponent DM** 

# **DM production (Fermion)**



## **DM production (Scalar)**



## **DM production (Scalar)**



#### **DM production (Scalar)**



#### **Scenarios**



| Sc.   | $\psi$ population    | $\boldsymbol{S}$ population | $10^{-10} y_{\phi} / \sqrt{\eta_D / \eta_B}$ | R                | $T_D^{(S)}/T_*^{(S)}$ |
|-------|----------------------|-----------------------------|----------------------------------------------|------------------|-----------------------|
| 1     | Asymmetric           | Asymmetric                  | $\leq 0.06$                                  | $\ll 1$          | Any                   |
| 2     | Asymmetric           | Partially Asymmetric        | $\leq 0.06$                                  | $\mathcal{O}(1)$ | < 1                   |
| 1 - 2 | Asymmetric           | Asymmetric                  | $\leq 0.06$                                  | $\mathcal{O}(1)$ | > 1                   |
| 3     | Partially Asymmetric | Asymmetric                  | 0.06 - 2                                     | $\ll 1$          | Any                   |
| 4     | Partially Asymmetric | Partially Asymmetric        | 0.06 - 2                                     | $\mathcal{O}(1)$ | < 1                   |
| 3-4   | Partially Asymmetric | Asymmetric                  | 0.06 - 2                                     | $\mathcal{O}(1)$ | > 1                   |
| 5     | Symmetric            | Asymmetric                  | $\gtrsim 2$                                  | $\ll 1$          | Any                   |
| 6     | Negligible           | Symmetric                   | $y_\phi \lesssim 5 	imes 10^{-7}$            | $\gtrsim O(10)$  | < 1                   |

#### **Scenarios**



# Phenomenology

Freeze-in: small couplings, suppressed DD  $y_\phi \ll 1 ~~g_X \ll 1$ 

ADM: suppressed ID + annihilations in dark sectors

Large B - L scale: no collider searches  $v_{B-L} \gtrsim 10^{11} \text{ GeV}$  DD of scalar DM through Higgs portal  $\lambda_{HS}(H^{\dagger}H)(S^{\dagger}S)$ 

ID of scalar DM when S is symmetric

Enhanced ID signal for Scenario 6  $Y_S = Y_{S^{\dagger}} = \eta_S$   $m_S = 2.5 \text{ GeV}$  $\sigma v > \sigma v_{\text{WIMP}}$ 

+ neutrino line!

# Smoking gun: neutrino line $\mathcal{O}_6 = \bar{L}\tilde{H}S\phi^{\dagger}\psi$

generated at  $E \ll m_{\chi} \ll M_{N_1}$ 

 $S - O_6 \qquad \psi \\ m_S > m_{\psi} \\ \nu$ 

(analogous process if  $m_{\psi} > m_S$ )

$$\Gamma(S \to \bar{\psi} + \nu) = \frac{|y_S|^2 y_\phi^2 m_S}{32\pi} \left(\frac{v_\phi}{m_\chi}\right)^2 \left(\frac{m_\nu}{M_{N_1}}\right) \left(1 - \frac{m_\psi^2}{m_S^2}\right)$$

Neutrino line peaked at  $E_{\nu} \simeq m_S/2 \longrightarrow \mathcal{O}(\text{GeV})$ 

Experimental bound  $\tau > 10^{23} \ {
m sec}$ 

Future neutrino telescopes?  $\tau \sim 10^{24-25}$  sec

[Palomares-Ruiz 2008, Garcia-Cely et al. 2017, Coy et al. 2021]



Уø



### Scenario 6: 1 DM



Enhanced Indirect Detection signals may be present  $\sigma v > \sigma v_{\text{WIMP}}$ 

#### Scenario 6: 1 DM





- Asymmetric DM models needs large annihilations cross section: thermalization
- Asymmetric FIMP DM can be realized through late decays of asymmetric particle
- The framework naturally needs an extended dark sector: multicomponent DM, baryogenesis, neutrino masses
- Late DM decays can be constrained by neutrino experiments

Backup

# **Fermion annihilations**



| Sc. | ψ                                                                                                                                                                                                                  | S                                                                                                                                                                                     | $\Omega_{\rm DM}/\Omega_B$                                                   | $\Omega_S/\Omega_{-1}$                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1   | Asymmetric<br>LD $\chi \rightarrow \psi \varphi$<br>$Y_{\psi}^{+} = \eta_D$<br>$Y_{\psi}^{-} \ll Y_{\psi}^{+}$                                                                                                     | Asymmetric<br>FO $S^{\dagger}S \rightarrow \varphi\varphi$<br>$Y_{S}^{+} = \eta_{D}$<br>$Y_{S}^{-} \ll Y_{S}^{+}$                                                                     | $\frac{\eta_D}{\eta_B} \frac{m_\psi + m_S}{m_p}$                             | $\frac{m_{\psi}}{m_S}$                                      |
| 2   | $\begin{array}{l} \text{Asymmetric} \\ \text{LD } \chi \rightarrow \psi \varphi \\ Y_{\psi}^+ = \eta_D/(1+R) \\ Y_{\psi}^- \ll Y_{\psi}^+ \end{array}$                                                             | Partially asymmetric<br>FO $S^{\dagger}S \rightarrow \varphi\varphi$<br>$+ \text{LD } \chi \rightarrow S^{\dagger}\nu_{L}$<br>$Y_{S}^{+} = \eta_{D}$<br>$Y_{S}^{-} = \eta_{D}R/(1+R)$ | $\frac{\eta_D}{\eta_B} \frac{m_\psi + (1+2R)m_S}{(1+R)m_p}$                  | $\frac{m_{\psi}}{m_S(1+2R)}$                                |
| 1-2 | $\begin{array}{l} \text{Asymmetric} \\ \text{LD } \chi \to \psi \varphi \\ Y_{\psi}^+ = \eta_D / (1+R) \\ Y_{\psi}^- \ll Y_{\psi}^+ \end{array}$                                                                   | Asymmetric<br>FO $S^{\dagger}S \rightarrow \varphi\varphi$<br>$+ \text{LD } \chi \rightarrow S^{\dagger}\nu_{L}$<br>$Y_{S}^{+} = \eta_{D}/(1+R)$<br>$Y_{S}^{-} \ll Y_{S}^{+}$         | $\frac{\eta_D}{\eta_B} \frac{m_\psi + m_S}{(1+R)m_p}$                        | $rac{m_{\psi}}{m_S}$                                       |
| 3   | Partially asymmetric<br>$FI + LD \ \chi \rightarrow \psi \varphi$<br>$Y_{\psi}^+ = Y_{FI}/2 + \eta_D$<br>$Y_{\psi}^- = Y_{FI}/2$                                                                                   | Asymmetric<br>FO $S^{\dagger}S \rightarrow \varphi \varphi$<br>$Y_{S}^{+} = \eta_{D}$<br>$Y_{S}^{-} \ll Y_{S}^{+}$                                                                    | $\frac{m_{\psi}(\eta_D + Y_{\rm FI}) + \eta_D m_S}{\eta_B m_p}$              | $\frac{m_\psi(\eta_D + Y_{\rm FI})}{m_S\eta_D}$             |
| 4   | $\begin{array}{l} \text{Partially Asymmetric} \\ \text{FI} + \text{LD} \ \chi \rightarrow \psi \varphi \\ Y_{\psi}^{+} = (Y_{\text{FI}}/2 + \eta_D)/(1+R) \\ Y_{\psi}^{-} = Y_{\text{FI}}/(2(1+R)) \end{array}$    | Partially Asymmetric<br>FO $S^{\dagger}S \rightarrow \varphi\varphi$<br>$+ \text{LD }\chi \rightarrow S^{\dagger}\nu_{L}$<br>$Y_{S}^{+} = \eta_{D}$<br>$Y_{S}^{-} = \eta_{D}R/(1+R)$  | $\frac{m_{\psi}(\eta_D + Y_{\rm FI}) + \eta_D(1 + 2R)m_S}{\eta_B(1 + R)m_p}$ | $\frac{m_{\psi}(\eta_D + Y_{\rm FI})}{m_S \eta_D (1 + 2R)}$ |
| 3-4 | $ \begin{array}{l} \text{Partially Asymmetric} \\ \text{FI} + \text{LD} \; \chi \rightarrow \psi \varphi \\ Y_{\psi}^{+} = (Y_{\text{FI}}/2 + \eta_D)/(1+R) \\ Y_{\psi}^{-} = Y_{\text{FI}}/(2(1+R)) \end{array} $ | Asymmetric<br>FO $S^{\dagger}S \rightarrow \varphi\varphi$<br>$+ \text{ LD } \chi \rightarrow S^{\dagger}\nu_{L}$<br>$Y_{S}^{+} = \eta_{D}/(1+R)$<br>$Y_{S}^{-} \ll Y_{S}^{+}$        | $\frac{m_\psi(\eta_D+Y_{\rm FI})+\eta_D m_S}{\eta_B(1+R)m_p}$                | $\frac{m_\psi(\eta_D + Y_{\rm FI})}{m_S \eta_D}$            |
| 5   | $\begin{array}{c} \text{Symmetric} \\ \text{FI } \chi \to \psi \varphi \\ Y_{\psi}^+ = Y_{\text{FI}}/2 + \eta_D \simeq Y_{\text{FI}}/2 \\ Y_{\psi}^- = Y_{\text{FI}}/2 \end{array}$                                | $\begin{array}{l} \text{Asymmetric} \\ \text{FO} \ S^{\dagger}S \rightarrow \varphi\varphi \\ Y^+_S = \eta_D \\ Y^S \ll Y^+_S \end{array}$                                            | $\frac{\eta_D}{\eta_B} \frac{m_\psi(Y_{\rm FI}/\eta_D) + m_S}{m_p}$          | $\frac{m_{\psi}Y_{\rm FI}}{m_S\eta_D}$                      |
| 6   | Negligible production                                                                                                                                                                                              | Symmetric<br>FO $S^{\dagger}S \rightarrow \varphi\varphi$<br>$+ \text{ LD } \chi \rightarrow S^{\dagger}\nu_L$<br>$Y_S^+ = \eta_D$<br>$Y_S^- = \eta_D$                                | < 1                                                                          | $\frac{\eta_D}{\eta_B} \frac{2m_S}{m_p}$                    |

#### **Scalar annihilations**



#### **Asymmetric WIMP**



#### **Partially asymmetric DM**

$$\rho_{\rm DM} = s \sum_{i} m_{i} \eta_{i} \left( 1 + 2 \frac{r_{i}}{1 - r_{i}} \right)$$

$$\downarrow \qquad \qquad \downarrow$$
Asymmetric Symmetric



Generation of the asymmetries through out-of-equilibrium decays

Falkowski, Ruderman, Volansky [1101.4936]





Washout and transfer of the asymmetries

Falkowski, Ruderman, Volansky [1101.4936]



39

# Cogenesis



and mixing angles are correctly reproduced

# **Smoking gun: neutrino line**



Coi, Gupta, Hambye [2104.00042]

#### **Dark Matter nature**



#### **Cold vs Warm**



#### **Cold vs Warm**



#### Gauge boson bounds





m<sub>x</sub> [GeV]



| Field     | $\operatorname{Spin}$ | $U(1)_{B-L}$ | $U(1)_D$ | $U(1)_X$ |
|-----------|-----------------------|--------------|----------|----------|
| $S_L$     | 1/2                   | 0            | 0        | 0        |
| $\sigma'$ | 0                     | +1           | 0        | 0        |

$$\langle \sigma' \rangle = v_{B-L} \sim \mathcal{O}(\text{TeV})$$

$$\uparrow$$

$$\mathcal{L}_{\text{ISS}} = \overline{S_L} i \partial \!\!\!/ S_L - \sigma' \overline{S_L} y_{\sigma'} N_R - \frac{1}{2} \overline{S_L} \mu S_L^c + \text{H.c.}$$

Low-scale  $m_{Z_{B-L}}$  allows for annihilations to SM fermions to erase the symmetric component

$$\bar{\chi}\chi \to Z_{B-L} \to \bar{q}q(\bar{l}l)$$

(highly suppressed in the high-scale scenario)







Looking for missing energy from  $\chi$  decays

m<sub>x</sub> [GeV]

| - | Field    | Spin | $U(1)_{B-L}$ | $U(1)_D$ | $U(1)_X$ |
|---|----------|------|--------------|----------|----------|
| ( | $N_R^i$  | 1/2  | -1           | 0        | 0        |
|   | σ        | 0    | +2           | 0        | 0        |
| - | $\chi_0$ | 1/2  | -1           | 1        | 0        |
|   | $\psi_0$ | 1/2  | 0            | 0        | +1       |
|   | S        | 0    | 0            | -1       | 0        |
|   | $\phi$   | 0    | +1           | -1       | +1       |



 $M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$ 

$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.} \,.$$

Majorana masses for RHNs from  $U(1)_{B-L}$  breaking  $v_{B-L} \gtrsim 10^{11} \text{ GeV}$ meutrino masses (Type- I see-saw)  $m_{\nu} = -m_D M_N^{-1} m_D^T$ 

| Field      | $\operatorname{Spin}$ | $U(1)_{B-L}$ | $U(1)_D$ | $U(1)_X$ |
|------------|-----------------------|--------------|----------|----------|
| $N_R^i$    | 1/2                   | -1           | 0        | Û        |
| $\sigma$   | 0                     | +2           | 0        | 0        |
| $\chi_0$   | 1/2                   | -1           | 1        | 0        |
| $\psi_{0}$ | 1/2                   | 0            | 0        | +1       |
| S          | 0                     | 0            | -1       | 0        |
| $\phi$     | 0                     | +1           | -1       | +1       |



 $M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$ 

 $\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.} \,.$ 

Dark gauge group  $U(1)_D \otimes U(1)_X$ 

Assure DM stability and Dirac nature of dark fermions (necessary to have an asymmetry)  $\frac{1}{51}$ 

| Field    | $\operatorname{Spin}$ | $U(1)_{B-L}$ | $U(1)_D$ | $U(1)_X$ |
|----------|-----------------------|--------------|----------|----------|
| $N_R^i$  | 1/2                   | -1           | 0        | 0        |
| $\sigma$ | 0                     | +2           | 0        | 0        |
| $\chi_0$ | 1/2                   | -1           | 1        | 0        |
| $\psi_0$ | 1/2                   | 0            | 0        | +1       |
| S        | 0                     | 0            | -1       | 0        |
| $\phi$   | 0                     | +1           | -1       | +1       |



 $M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$ 

$$\mathcal{L}_{\rm int} = -\frac{y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i}{v_{\nu}^i} - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.} \,.$$

Gauge invariance allows for Yukawa operators

Generation baryon and dark asymmetries  $\eta_{\chi} = \eta_S \sim \eta_B$ 

| Field    | $\operatorname{Spin}$ | $U(1)_{B-L}$ | $U(1)_D$ | $U(1)_X$ |
|----------|-----------------------|--------------|----------|----------|
| $N_R^i$  | 1/2                   | -1           | 0        | 0        |
| $\sigma$ | 0                     | +2           | 0        | 0        |
| $\chi_0$ | 1/2                   | -1           | 1        | 0        |
| $\psi_0$ | 1/2                   | 0            | 0        | +1       |
| S        | 0                     | 0            | -1       | 0        |
| $\phi$   | 0                     | +1           | -1       | +1       |



 $M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$ 

$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.} \,.$$

 $\chi$  and S get in thermal equilibrium with the SM through gauge and scalar interactions

$$Y_{\chi} = Y_{\chi}^{\text{eq}} + \eta_{\chi} \qquad Y_{\bar{\chi}} = Y_{\chi}^{\text{eq}} \qquad \eta_{\chi} = \eta_{S} \sim \eta_{B}$$

| Field    | $\operatorname{Spin}$ | $U(1)_{B-L}$ | $U(1)_D$ | $U(1)_X$ |
|----------|-----------------------|--------------|----------|----------|
| $N_R^i$  | 1/2                   | -1           | 0        | 0        |
| $\sigma$ | 0                     | +2           | 0        | 0        |
| $\chi_0$ | 1/2                   | -1           | 1        | 0        |
| $\psi_0$ | 1/2                   | 0            | 0        | +1       |
| S        | 0                     | 0            | -1       | 0        |
| $\phi$   | 0                     | +1           | -1       | +1       |



 $M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$ 

$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.} \,.$$

We assume  $\begin{cases} y_{\phi} \ll 1 \\ g_X \ll 1 \end{cases}$  so that  $\psi$  is never in thermal equilibrium

| Field    | $\operatorname{Spin}$ | $U(1)_{B-L}$ | $U(1)_D$ | $U(1)_X$ |
|----------|-----------------------|--------------|----------|----------|
| $N_R^i$  | 1/2                   | -1           | 0        | 0        |
| $\sigma$ | 0                     | +2           | 0        | 0        |
| $\chi_0$ | 1/2                   | -1           | 1        | 0        |
| $\psi_0$ | 1/2                   | 0            | 0        | +1       |
| S        | 0                     | 0            | -1       | 0        |
| $\phi$   | 0                     | +1           | -1       | +1       |

 $\sigma \qquad v_{B-L} \gtrsim 10^{11} \text{ GeV}$   $m_{\nu} = -m_D M_N^{-1} m_D^T$   $y_{\sigma} \qquad Y_{\chi} = Y_{\chi}^{eq} + \eta_{\chi}$   $Y_{\bar{\chi}} = Y_{\chi}^{eq}$   $Y_{\bar{\chi}} = Y_{\chi}^{eq}$   $Y_{\bar{\chi}} = Y_{\chi}^{eq}$ 

 $M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$ 

$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.}$$

The  $\chi$  asymmetry is transferred to  $\psi$  through late decays  $\chi \rightarrow \psi + \phi$ 

Asymmetry and Fractional asymmetry

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$$



Asymmetry and Fractional asymmetry

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}} / Y_{\chi}$$





#### Asymmetric DM out of equilibrium (tiny couplings, freeze-in) ?

(How to erase the symmetric component?)

### **Early vs Late decays**



#### **Early vs Late decays**

