

Axion Star Explosions: A New Source for Axion Indirect Detection

Malcolm Fairbairn

With Xiaolong Du, Charis Pooni, Miguel Escudero, Doddy Marsh & Diego Blas

Here is the Idea...

- Light dark matter forms coherent solitonic cores inside galaxy halos
- Decay to photons resonantly enhanced
- Dense cores partially decay into photons when electron density is low enough
- Low energy photons absorbed by IGM
- Shock bubbles form which expand, ionising the Universe
- We constrain the ionisation using the CMB

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2ma^2}\nabla^2\psi + \frac{m\Phi}{a}\psi$$

 $\nabla^2 \Phi = 4\pi Gm(|\psi|^2 - \langle |\psi|^2 \rangle)$

Schive et al 2014

IMPORTANT PARAMETER RELATES CORE MASS TO HALO MASS

Schive et al found $\alpha = 1/3$

This more recent work (Chan, Ferreira, May, Hayashi & Chiba) finds that α =3/5

Coupling to Photons

If the fuzzy dark matter is an axion then there can also an induced coupling to photons.

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) - \frac{g_{a\gamma\gamma}}{4} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Bounds on axion-photon coupling $g_{a\gamma\gamma} < 0.66 \times 10^{-10} \,\text{GeV}^{-1}$ for $m_a < 0.02 \,\text{eV}$ 10^{-6} White dwarf 10^{-7} CROWS ALPS-ABRA OSQAR 10^{-8} 10 cm SN1987A **Solar** ν 10^{-9} (ν) CAST SHAFT SN1987A (7) Horizontal branch 10^{-10} DSNALP Neutron stars 0 10^{-11} HESS Fermi VIMOS MUSE DMX SLI RBF+U SN1987A 10^{-12} Chandra DMX 10^{-16} 10^{-17} 10^{-18} XMM-Newton 10^{-19} $10^{-12}0^{-11}10^{-10}10^{-9}10^{-8}10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}10^{7}$ m_a [eV] Ciaran O'Hare produced plot

Concentrate on parametric resonance

Stimulated emission exponentially enhances decay

$$\Gamma_{\rm exp} L \gtrsim 1$$
, where $\Gamma_{\rm exp} \equiv g_{a\gamma\gamma} \sqrt{\frac{\rho_a}{2}}$

Translates into halos with a certain minimum mass

$$M_S^{\text{decay}} \simeq 8.4 \times 10^{-5} M_{\odot} \left(\frac{10^{-11} \,\text{GeV}^{-1}}{g_{a\gamma\gamma}}\right) \left(\frac{10^{-13} \,\text{eV}}{m_a}\right)$$

And it doesn't take long to happen...

$$\tau_S^{\text{decay}} \simeq r_c \simeq \text{day}\left(\frac{8.4 \times 10^{-5} M_{\odot}}{M_S}\right) \left(\frac{10^{-13} \,\text{eV}}{m_a}\right)^2$$

Levkov, Tkachev et al.

Different Signatures → Consequence of Plasma Blocking

Absorption of the photons in IGM through inverse Bremsstrahlung

Use technology from Supernova Remnant evolution

Picture from Ken Nagamine

Sets new constraints, which will get stronger with 21cm observations

$m_a \,[eV]$ ZOOM IN!!!

Conclusions

- Fuzzy Dark Matter leads to solitonic cores in dark matter halos
- Axion decay into photons is enhanced in dense regions
- Solitons decay and ionise the Universe
- CMB puts constraints on this region of parameter space which may be competitive with other constraints