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the Cherenkov Telescope Array (CTA)

Set to become the world’s leading very high-energy 
γ-ray telescope

Credit Rendering: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO



the Cherenkov Telescope Array (CTA)

Set to become the world’s leading very high-energy 
γ-ray telescope

• Order of magnitude more sensitive than current 
Cherenkov telescopes at TeV-level

• Energy resolution better than 10 percent at TeV-level

Credit Rendering: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO



We want to search for ALPs with CTA 

5
Credit NGC1275: A. Fabian (Institute of Astronomy, University of Cambridge). NASA, ESA, and the Hubble Heritage . 



We want to search for ALPs with CTA 
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Axion-like particles

• Extension of the QCD-Axion [1]

• Popular candidates for dark matter and 
physics beyond the  standard model

• Can oscillate into photons in the 
presence of magnetic fields

Credit NGC1275: A. Fabian (Institute of Astronomy, University of Cambridge). NASA, ESA, and the Hubble Heritage . 



Credit NGC1275: A. Fabian (Institute of Astronomy, University of Cambridge). NASA, ESA, and the Hubble Heritage . 
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γ-rays

We want to search for ALPs with CTA 



Credit NGC1275: A. Fabian (Institute of Astronomy, University of Cambridge). NASA, ESA, and the Hubble Heritage . 
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γ-rays

We want to search for ALPs with CTA 
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Problem: 

How can we do reliable parameter inference 
for this complicated model?



Parameters in our ALP-model*

Parameters of interest

~15 Nuisance parameters

* Our physical model and simulations are based on gammaALPs by Manuel Meyer [2]

▪ ALP mass, 𝑚
▪ ALP coupling to photons, 𝑔

▪ NGC1275 intrinsic spectrum amplitude
▪ NGC1275 intrinsic spectral index
▪ NGC1275 intrinsic cut-off energy

▪ Magnetic field strength of NGC1275
▪ Magnetic field configuration
▪ Extension of Perseus cluster
▪ 7 electron density-related parameters
▪ 3 turbulence-related parameters
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Too many; cannot do inference without 
neglecting uncertainties
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Parameters in our ALP-model*

Parameters of interest

~15 Nuisance parameters

Astrophysical ⇒ large uncertainties

Too many; cannot do inference without 
neglecting uncertainties

Risk of overconfident 
limits!

* Our physical model and simulations are based on gammaALPs by Manuel Meyer [2]

▪ ALP mass, 𝑚
▪ ALP coupling to photons, 𝑔

▪ NGC1275 intrinsic spectrum amplitude
▪ NGC1275 intrinsic spectral index
▪ NGC1275 intrinsic cut-off energy

▪ Magnetic field strength of NGC1275
▪ Magnetic field configuration
▪ Extension of Perseus cluster
▪ 7 electron density-related parameters
▪ 3 turbulence-related parameters
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Simulation-based inference is gaining 
traction as an alternative approach, 
particularly to do Bayesian inference
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The Likelihood Ratio Trick
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The Likelihood Ratio Trick

Output

Neural network

Input𝒙𝑖
𝑝1(𝒙𝑖)

𝑝2(𝒙𝑖)
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The Likelihood Ratio Trick

Output

Neural network

Input𝒙𝑖
𝑝1(𝒙𝑖)

𝑝2(𝒙𝑖)

𝑝(𝝑|𝒙) =
𝑝 𝒙 𝝑)

𝑝 𝒙
𝑝(𝝑)

This will allow us to estimate the 
likelihood ratio in Bayes’ theorem!
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The Likelihood Ratio Trick – How to



1. Draw many samples: 𝒙0, 𝒙2, 𝒙4, 𝒙6, ... ~ 𝑝1(𝒙)  

𝒙𝟏, 𝒙3, 𝒙5, 𝒙7, ... ~ 𝑝2(𝒙)  
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The Likelihood Ratio Trick – How to



1. Draw many samples:

Output

Trained neural 
network

𝑑 𝜖 (0 , 1)
Input𝒙𝒊

𝒙0, 𝒙2, 𝒙4, 𝒙6, ... ~ 𝑝1(𝒙)  

𝒙𝟏, 𝒙3, 𝒙5, 𝒙7, ... ~ 𝑝2(𝒙)  

2. Train the network to classify the samples:

20

The Likelihood Ratio Trick – How to



1. Draw many samples:

Output
𝑑 𝜖 (0 , 1)

Input𝒙𝒊

𝒙0, 𝒙2, 𝒙4, 𝒙6, ... ~ 𝑝1(𝒙)  

𝒙𝟏, 𝒙3, 𝒙5, 𝒙7, ... ~ 𝑝2(𝒙)  
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𝒙𝒊  ~ 𝑝1(𝒙) 𝒙𝒊 ~ 𝑝2(𝒙)
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The Likelihood Ratio Trick – How to

Trained neural 
network



1. Draw many samples:

Output
𝑑 𝜖 (0 , 1)

Mathematical 
magic

Input𝒙𝒊
𝑝1(𝒙𝑖)

𝑝2(𝒙𝑖)
= 𝑓(𝑑)

𝒙0, 𝒙2, 𝒙4, 𝒙6, ... ~ 𝑝1(𝒙)  

𝒙𝟏, 𝒙3, 𝒙5, 𝒙7, ... ~ 𝑝2(𝒙)  

2. Train the network to classify the samples:

𝒙𝒊  ~ 𝑝1(𝒙) 𝒙𝒊 ~ 𝑝2(𝒙)
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The Likelihood Ratio Trick – How to

⇒

Trained neural 
network



1. Draw many samples:

Output
𝑑 𝜖 (0 , 1)

Input𝒙𝒊
𝑝1(𝒙𝑖)

𝑝2(𝒙𝑖)
=

𝑑

1 − 𝑑

𝒙0, 𝒙2, 𝒙4, 𝒙6, ... ~ 𝑝1(𝒙)  

𝒙𝟏, 𝒙3, 𝒙5, 𝒙7, ... ~ 𝑝2(𝒙)  

2. Train the network to classify the samples:
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The Likelihood Ratio Trick – How to

⇒

Trained neural 
network

Mathematical 
magic



LOSS =  − ෍  𝑦 ln 𝑑 +  (1 − 𝑦) ln 1 − 𝑑  

𝜕

𝜕𝝋
𝐿𝑂𝑆𝑆 =  ඵ  

𝑝1 𝒙  

𝑑
−  

𝑝2 𝒙

1 − 𝑑
 

𝜕𝑑

𝜕𝝋
 =  0

𝑑

1−𝑑
   =  

𝑝1(𝒙)

𝑝2(𝒙)

LOSS →  ඵ  𝑝1 𝒙 ln 𝑑 +  𝑝2 𝒙 ln 1 − 𝑑  d𝒙

When the neural network is trained, it is actually trying to minimize a loss function. Different loss functions are possible, but for clarity we will assume that we 
are using the Binary Cross Entropy in this derivation: 

𝒙𝒊

• The sum is  over all training samples
• y  = 0 if a training sample was drawn from 𝑝1(𝒙), 1 if from 𝑝2(𝒙).
• d  = output from neural network for given sample input 

Notice that the loss becomes smaller when the network manages to categorize more samples correctly. In the limit of infinite training samples, the loss becomes  

We assume that the network manages to optimize the loss function perfectly. If this is the case, the derivative of the loss with respect to the neural network’s 
hyperparameters (weights and biases, which are adjusted during training), which we denote by 𝝋, is 0. Notice that in the integrand, only d is dependent on 𝝋.

The likelihood ratio trick follows from setting the expression in the square brackets to zero. 

Heuristic derivation of the likelihood ratio trick

24



Neural Ratio Estimation: posteriors from the LR trick 
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Neural Ratio Estimation: posteriors from the LR trick 

1. Draw training samples  (𝒙𝑖, 𝑚𝒊, 𝑔𝒊) 

𝑚𝑖 = 2 neV

𝑔𝑖 = 3 ×
10−11

GeV

example samples 
(𝒙𝑖 , 𝑚𝒊, 𝑔𝒊) 

𝒙𝑖 = 
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Neural Ratio Estimation: posteriors from the LR trick 

1. Draw training samples  (𝒙𝑖, 𝑚𝒊, 𝑔𝒊) 

Modified 
Output

Neural network

Input 𝑝 𝒙𝑖 𝑚𝑖 , 𝑔𝑖  

𝑝 𝒙𝑖  

2. Train a NN to distinguish the samples
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× Prior = Posterior!
𝑚𝑖 = 2 neV

𝑔𝑖 = 3 ×
10−11

GeV

example samples 
(𝒙𝑖 , 𝑚𝒊, 𝑔𝒊) 

𝒙𝑖 = 



Summary so far

Modified 
Output

Neural network

Input

Posterior     =                         ×      Prior
Modified 
Output

Vary 𝑚𝑖  and 𝑔𝑖  to 
scan parameter space

𝑚𝑖 = 2 neV

𝑔𝑖 = 3 ×
10−11

GeV

example samples (𝒙𝑖 ,𝑚𝒊 , 𝑔𝒊) 

𝒙𝑖 = 
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Simulated data
=

γ-rays ~ cut-off power law

×

Instrument response 

+

Cosmic ray background
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How our simulations are made

Using the IRF (for CTA)

prod3: South_z20_50h, 
together with  gammapy 0.19 [3]

𝜑 𝐸 =  𝜑0

𝐸

𝐸0

𝛾

𝑒−𝐸/𝐸𝑐𝑢𝑡

Using the IRF (for CTA)

prod3: South_z20_50h, 
together with  gammapy 0.19 [3]



Simulated data
=

γ-rays ~ cut-off power law

×

Instrument response 

 ×

Absorption from EBL

×

“Wiggles” from photon-ALP-
oscillations

+

Cosmic ray background

32

How our simulations are made
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Using gammaALPs [2]

Using the IRF (for CTA)

prod3: South_z20_50h, 
together with  gammapy 0.19 [3]

𝜑 𝐸 =  𝜑0

𝐸

𝐸0

𝛾

𝑒−𝐸/𝐸𝑐𝑢𝑡

Using the IRF (for CTA)

prod3: South_z20_50h, 
together with  gammapy 0.19 [3]
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Parameters of interest

Nuisance parameters

▪ ALP mass, 𝑚
▪ ALP coupling to photons, 𝑔

▪ NGC1275 intrinsic spectrum amplitude
▪ NGC1275 intrinsic spectral index
▪ NGC1275 intrinsic cut-off energy

Model Parameters

Let’s start with a simplified case study...

Modelling specifications

• ~ 1 000 000 simulations used in training

• Prior: uniform on log scale

• Assumed observation time = 50 hr

• 200 energy bins in range between 10 GeV and 100 
TeV

Simulated observation



34

First attempts at ALP-inference show promise

Example 
posterior

.   

Source: [6]
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First attempts at ALP-inference show promise

Example 
posterior

.   

Source: [6]
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First attempts at ALP-inference* show promise

Example 
posterior

.   

Source: [6]

* We perform the NRE posterior estimation using the open-source python package SWYFT [4]



How can we trust the estimated posterior 
to accurately represent the true posterior?
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𝑚𝑚𝒊

Validation of  estimated posteriors
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𝑚𝑖 𝑚
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Validation of  estimated posteriors



𝑚𝑖 𝑚

90% credibility region
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Validation of  estimated posteriors (for one parameter)



𝑚𝒊 𝑚

90% credibility region
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Validation of  estimated posteriors



𝑚𝒊 𝑚𝑚3𝑚5 𝑚0 𝑚1𝑚2𝑚4

90% credibility region
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Validation of  estimated posteriors



𝑚3𝑚0𝑚𝑖 𝑚𝑚5 𝑚1𝑚2𝑚4

90% credibility region
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Validation of  estimated posteriors



𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

44

Validation of  estimated posteriors



𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

𝑚𝑖 𝑚

68% credibility region
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Validation of  estimated posteriors



𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

𝑚𝑖 𝑚

68% credibility region
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Validation of  estimated posteriors
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Expected coverage testing indicates 
we are on the right track

ECP ≈ 𝛼 for all 𝛼 

𝛼 

ECP

Validation of (mass, coupling)
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... but we still got a (little) ways to go

Example 
posterior

1. We may still not be training our NNs to their full potential
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▪ But validation indicates we are on the right track!
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... but we still got a (little) ways to go

Example 
posterior

Good news: 
Steps 2 and 4 don’t require any new implementations! 

1. We may still not be training our NNs to their full potential

2. We want to take into account several more nuisance parameters

3. We need to switch to more state-of-the-art instrument response functions

▪ Related to technical (hardware) limitations → hopefully soon to be solved.
▪ But validation indicates we are on the right track!
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posterior

1. We may still not be training our NNs to their full potential
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Summary

• Axion-like particles (ALP) are popular beyond-SM and DM candidates, with potential – but 
difficult – detectability in cosmic gamma-rays. 

• Neural Ratio Estimation (NRE) may allow us to produce accurate ALP-limits that would 
otherwise be overconfident. 

• Recent developments are making it possible to assess the reliability of NRE, thus making it 
a serious contender to conventional inference techniques. 

• Our preliminary results indicate that NRE is a viable method for our physics case

• Our analysis will likely improve significantly soon, given more machine learning-friendly 
technical resources. 
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Overcoming limitations 
to ALP parameter inference 
with Neural Ratio Estimation

Inference using
machine learning

What we all do! 

Not limited to 
ALP searches!

A method of

“Simulation-based inference (SBI)”
or

“Likelihood-free inference”
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the Cherenkov Telescope Array (CTA) Photon directions and 
energies are reconstructed 
from extensive air showers

Cherenkov light
Set to become the world’s leading very high-energy 
γ-ray telescope

• Order of magnitude more sensitive than current 
Cherenkov telescopes at TeV-level

• Energy resolution better than 10 percent at TeV-level
3 different sizes of telescopes 
allow for sensitivity in the range 
~20 GeV to ~300 TeV

Credit Rendering: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO



We want to search for ALPs with CTA 

62

Axion-like particles

• Extension of the QCD-Axion [1]

• Popular candidates for dark matter and 
physics beyond the  standard model

• Can oscillate into photons in the 
presence of magnetic fields

Credit NGC1275: A. Fabian (Institute of Astronomy, University of Cambridge). NASA, ESA, and the Hubble Heritage . 



Credit NGC1275: A. Fabian (Institute of Astronomy, University of Cambridge). NASA, ESA, and the Hubble Heritage . 

63

γ-rays

We want to search for ALPs with CTA 

γ-ray spectra from bright sources with strong magnetic 
fields may show signs of ALP-photon oscillations. 

Simulated γ-ray spectrum of NGC1275. See slide 16  for details. 
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Problem: 

How can we do reliable parameter inference 
for this complicated model?



Parameter inference requires computing likelihood ratios

𝑇𝑆(𝝑𝑖|𝒙𝑖) = −2 log

sup
𝜽

𝑝 𝒙𝑖 𝝑𝒊, 𝜽)

sup
(𝝑,𝜽)

𝑝 𝒙𝑖 𝝑, 𝜽)

Frequentist approach: 

𝑝(𝝑𝑖|𝒙𝑖) =
𝑝 𝒙𝑖 𝝑𝑖)

𝑝 𝒙𝑖
𝑝(𝝑𝑖)

Bayesian approach: 

Takes too long if there are 
too many (nuisance) parameters 

⇒ Must optimize over all parameters ⇒ Must integrate over nuisance parameters

𝒙 = Observation
𝝑 = Parameters of interest 
𝜽 = Nuisance parameters
𝑖 = Sample index
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Parameters in our ALP-model*

Parameters of interest

~15 Nuisance parameters

Astrophysical ⇒ large uncertainties

Too many; cannot calculate the posterior 
without neglecting uncertainties

Risk of overconfident 
posteriors!

* Our physical model and simulations are based on gammaALPs by Manuel Meyer [2]

▪ ALP mass, 𝑚
▪ ALP coupling to photons, 𝑔

▪ NGC1275 intrinsic spectrum amplitude
▪ NGC1275 intrinsic spectral index
▪ NGC1275 intrinsic cut-off energy

▪ Magnetic field strength of NGC1275
▪ Magnetic field configuration
▪ Extension of Perseus cluster
▪ 7 electron density-related parameters
▪ 3 turbulence-related parameters
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Simulation based inference is emerging 
as an alternative approach, particularly 

to do Bayesian inference
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The Likelihood Ratio Trick

Goal: Given two distributions 𝑝1(𝒙) and 𝑝2 𝒙 , train a neural network to do the following:  

Output

Neural network

Input𝒙𝑖

A sample from 
some distribution

𝑝1(𝒙𝑖)

𝑝2(𝒙𝑖)

𝑝(𝝑|𝒙) =
𝑝 𝒙 𝝑)

𝑝 𝒙
𝑝(𝝑)

This will allow us to estimate the 
likelihood ratio in Bayes’ theorem!

68

Could be an 
observation!



How to do the Likelihood Ratio Trick:

1. Draw many samples from both distributions:  

Output

Neural network

𝑑 𝜖 (0 , 1)
LR trickInput𝒙𝒊

𝑝1(𝒙𝑖)

𝑝2(𝒙𝑖)
= 𝑓(𝑑)

𝒙0, 𝒙2, 𝒙4, 𝒙6, ... ~ 𝑝1(𝒙)  

𝒙𝟏, 𝒙3, 𝒙5, 𝒙7, ... ~ 𝑝2(𝒙)  

2. Train the network to classify the samples according 
to which distribution they were likely to have been 
drawn from:
 

3. The probability ratio is now a simple known 
function of the “classification output” 𝑑.

Known!
(but dependent on 

loss function)

𝒙𝒊  ~ 𝑝1(𝒙) 𝒙𝒊 ~ 𝑝2(𝒙)

For example, if the binary cross entropy 
is used as the NNs loss function, then 

𝑓(𝑑) =
𝑑

1 − 𝑑
=

𝑝1(𝒙𝑖)

𝑝2(𝒙𝑖)
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LOSS =  − ෍  𝑦 ln 𝑑 +  (1 − 𝑦) ln 1 − 𝑑  

𝜕

𝜕𝝋
𝐿𝑂𝑆𝑆 =  ඵ  

𝑝1 𝒙  

𝑑
−  

𝑝2 𝒙

1 − 𝑑
 

𝜕𝑑

𝜕𝝋
 =  0

𝑑

1−𝑑
   =  

𝑝1(𝒙)

𝑝2(𝒙)

LOSS →  ඵ  𝑝1 𝒙 ln 𝑑 +  𝑝2 𝒙 ln 1 − 𝑑  d𝒙

When the neural network is trained, it is actually trying to minimize a loss function. Different loss functions are possible,  but for clarity we will assume that we 
are using the Binary Cross Entropy in this derivation: 

𝒙𝒊

• The sum is  over all training samples
• y  = 0 if a training sample was drawn from 𝑝1(𝒙), 1 if from 𝑝2(𝒙).
• d  = output from neural network for given sample input 

Notice that the loss becomes smaller when the network manages to categorize more samples correctly. In the limit of infinite training samples, the loss becomes  

We assume that the network manages to optimize the loss function perfectly. If this is the case, the derivative of the loss with respect to the neural network’s 
hyperparameters (weights and biases, which are adjusted during training), which we denote by 𝝋, is 0. Notice that in the integrand, only d is dependent on 𝝋.

The likelihood ratio trick follows from setting the expression in the square brackets to zero. 

Heuristic derivation of the likelihood ratio trick
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An intuitive interpretation of  the LRT

71

To have the best possible chance of attributing a sample 𝒙𝒊 to the correct distribution, 
the NN must count what number of training samples similar to 𝒙𝒊 came from 𝑝1 𝒙  
compared to 𝑝2 𝒙 . The relationship between those two numbers converges to precisely 
𝑝1 𝒙

𝑝2 𝒙
.



Neural Ratio Estimation: posteriors from the LR trick 

1. Draw many samples  (𝒙𝑖 , 𝑚𝒊, 𝑔𝒊) 

Modified 
Output

Neural network

Input 𝑝 𝒙𝑖 𝑚𝑖 , 𝑔𝑖  𝑝(𝑚𝑖 , 𝑔𝑖)

𝑝 𝒙𝑖  𝑝(𝑚𝑖 , 𝑔𝑖)
 =  

𝑝(𝑚𝑖 , 𝑔𝑖|𝒙𝑖)

𝑝 𝑚𝑖 , 𝑔𝑖

2. Train a NN to distinguish the samples, 
and apply the LR trick
 

from  𝑝 𝒙 𝑚, 𝑔  𝑝(𝑚, 𝑔)

and from   𝑝 𝒙  𝑝(𝑚, 𝑔)

i.e. Sample (𝑚𝑖 , 𝑔𝑖) from the prior 𝑝(𝑚, 𝑔), then 
simulate 𝒙𝑖 from (𝑚𝑖 , 𝑔𝑖). 

i.e. Sample (𝑚𝑗 , 𝑔𝑗) from the prior 𝑝(𝑚, 𝑔), then 

simulate 𝒙𝑖 from (𝑚𝑗, 𝑔𝑗). 

Then draw (𝑚𝑖 , 𝑔𝑖) from the prior.  

Posterior!

Prior

By Bayes’ 
theorem

𝑚𝑖 = 2 neV

𝑔𝑖 = 3 ×
10−11

GeV

example samples (𝒙𝑖 ,𝑚𝒊 , 𝑔𝒊) 

𝒙𝑖 = 
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Summary so far

Modified 
Output

Neural network

Input

Posterior     =                         ×      Prior
Modified 
Output

Vary 𝑚𝑖  and 𝑔𝑖  to 
scan parameter space

𝑚𝑖 = 2 neV

𝑔𝑖 = 3 ×
10−11

GeV

example samples (𝒙𝑖 ,𝑚𝒊 , 𝑔𝒊) 

𝒙𝑖 = 
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How our simulations are made

Simulated data
=

γ-rays ~ cut-off power law
×

Instrument response 
(sensitivity + energy dispersion)

 ×

Absorption from EBL
(Extragalactic background light)

×
“Wiggles” from photon-ALP-

oscillations

+

Cosmic ray background
(Irreducibly misidentified as γ-rays)

γ 
su

rv
iv

al
 p

ro
ba

bi
lit

y

Using gammaALPs [2]

Using the IRF (for CTA)

prod3: South_z20_50h, 
together with  gammapy 0.19 [3]

𝜑 𝐸 =  𝜑0

𝐸

𝐸0

𝛾

𝑒−𝐸/𝐸𝑐𝑢𝑡

Using the IRF (for CTA)

prod3: South_z20_50h, 
together with  gammapy 0.19 [3]
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Parameters of interest

Nuisance parameters

▪ ALP mass, 𝑚
▪ ALP coupling to photons, 𝑔

▪ NGC1275 intrinsic spectrum amplitude
▪ NGC1275 intrinsic spectral index
▪ NGC1275 intrinsic cut-off energy

Model Parameters

Let’s start with a simplified case study...

Modelling specifications

• ~ 1 000 000 simulations used in training

• Prior: uniform on log scale

• Assumed observation time = 50 hr

• 200 energy bins in range between 10 GeV and 100 
TeV

Simulated observation

(Taking into account only a few 
nuisance parameters while testing 

viability of the approach)  
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First attempts at ALP-inference* show promise

Example 
posterior

Preliminary indication:

The method seems to be sensitive in areas of 
parameter space where we expect sensitivity.   

.   

Source: [6]

* We perform the NRE posterior estimation using the open-source python package SWYFT [4]



How can we trust the estimated posterior 
to accurately represent the true posterior?

• We can’t know if the NN minimized the loss 
function properly

• What number of simulations is close enough to 
infinity for the LR trick to be valid? 
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𝑚𝑚𝒊

1. Draw a sample 𝑚𝒊 from the prior, and simulate an observation 𝒙𝒊 from it.

Validation of  estimated posteriors (for one parameter)

Analogous for 
multidimensional posteriors
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𝑚𝑖 𝑚

Analogous for 
multidimensional posteriors

2. Generate the estimated posterior from 𝒙𝒊.
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Validation of  estimated posteriors (for one parameter)



𝑚𝑖 𝑚

90% credibility region

Analogous for 
multidimensional posteriors

3. Define a credibility region of chosen credibility level 𝛼 (0.9 in the example), such that 
the volume of the estimate posterior in that region is 𝛼.
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Validation of  estimated posteriors (for one parameter)



𝑚𝒊 𝑚

90% credibility region

Analogous for 
multidimensional posteriors

4. Imagine the true posterior: the one we would get by using Bayes’ theorem. 
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Validation of  estimated posteriors (for one parameter)



𝑚𝒊 𝑚𝑚3𝑚5 𝑚0 𝑚1𝑚2𝑚4

Analogous for 
multidimensional posteriors

90% credibility region

5. If the estimated posterior is valid, then taking samples from the true posterior 
should result in a proportion 𝛼 of samples inside the credibility region. 
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Validation of  estimated posteriors (for one parameter)



𝑚3𝑚0𝑚𝑖 𝑚𝑚5 𝑚1𝑚2𝑚4

90% credibility region

Analogous for 
multidimensional posteriors

6. We cannot sample the, true posterior, as we cannot compute it. However, the 
original sample 𝑚𝑖  can be considered to be a single sample of the true posterior. 
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Validation of  estimated posteriors (for one parameter)



𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

7. We can conduct this experiment several times and count the proportion of cases 
where 𝑚𝑖  happens to be inside the credibility region. This proportion is called the 
Expected Coverage Probability (ECP).

We expect the ECP to be equal to 𝜶.

NOTE that all the posteriors are 
estimated using the same 
(previously trained) NN!
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Validation of  estimated posteriors (for one parameter)



𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

𝑚𝑖 𝑚

8. Furthermore, we expect the ECP to be equal to 𝛼 

for any chosen credibility 𝜶. 
NOTE that all the posteriors are 

estimated using the same 
(previously trained) NN!

68% credibility region
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Validation of  estimated posteriors (for one parameter)



𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚

𝑚𝑖 𝑚 𝑚𝑖 𝑚

𝑚𝑖 𝑚

9. According to Lemos et. al [3], if ECP = 𝛼 for all 𝛼, even 
when the credibility regions are randomly centered, then 
the estimated posterior is identical to the true posterior.  

NOTE that all the posteriors are 
estimated using the same 
(previously trained) NN!

68% credibility region
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Validation of  estimated posteriors (for one parameter)
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Expected coverage testing indicates 
we are on the right track

ECP ≈ 𝛼 for all 𝛼 

𝛼 

ECP

Validation of (mass, coupling)

... but maybe a slight bias 
towards the lower right?
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... but we still got a (little) ways to go

Example 
posterior

Good news: 
Steps 2 and 4 don’t require any new implementations! 
(just need to “press play”)

1. We may still not be training our NNs to their full potential

2. We want to take into account several more nuisance parameters

3. We need to switch to more state-of-the-art instrument response functions

4. We need to explore a larger (more interesting) region of parameter space

▪ Related to technical (hardware) limitations → hopefully soon to be solved.
▪ But Validation indicates we are on the right track!



Summary

• Axion-like particles (ALP) are popular beyond-SM and DM candidates, with potential – but 
difficult – detectability in cosmic gamma-rays. 

• Neural Ratio Estimation (NRE) may allow us to produce accurate ALP-limits that would 
otherwise be overconfident. 

• Recent developments are making it possible to assess the reliability of NRE, thus making it 
a serious contender to conventional inference techniques. 

• Our preliminary results indicate that NRE is a viable method for our physics case

• Our analysis will likely improve significantly soon, given more machine learning-friendly 
technical resources. 
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