Ultra-high-energy neutrinos as a probe of dark matter Damiano F. G. Fiorillo Niels Bohr Institute, Copenhagen

- based on arXiv:2307.02538,
- with V. Valera, M. Bustamante, W. Winter

VILLUM FONDEN

TeV-PeV range: e.g. LHAASO (Ando et al., arXiv:2210.15989)

PeV-EeV range: upper limits from PAO, CASA-MIA, KASCADE-**Grande, ...** (Chianese et al., arXiv:2108.01678; Das et al., 2302.02993, ...)

- **TeV-PeV range:** IceCube (Abbasi et al., arXiv:2205.12950, ...)
- PeV-EeV range: future radio telescopes? (RNO-G, IceCube-Gen2, GRAND, ...) (Chianese et al., arXiv:2103.03254; Guèpin et al., arXiv:2106.04446, **DF** et al., arXiv:2307.02538)

TeV-PeV range: e.g. LHAASO (Ando et al., arXiv:2210.15989)

PeV-EeV range: upper limits from PAO, CASA-MIA, KASCADE-**Grande, ...** (Chianese et al., arXiv:2108.01678; Das et al., 2302.02993, ...)

Damiano Fiorillo

Decaying dark matter

How to distinguish dark matter from astrophysical signal?

TeV-PeV range: IceCube (Abbasi et al., arXiv:2205.12950, ...)

PeV-EeV range: future radio telescopes? (RNO-G, IceCube-Gen2, GRAND, ...) (Chianese et al., arXiv:2103.03254; Guèpin et al., arXiv:2106.04446, **DF** et al., arXiv:2307.02538)

See also ARA, ARIANNA, RNO-G, ...

Damiano Fiorillo

Cosmogenic neutrinos

Greisen-Zatsepin-Kuzmin limit at 50 EeV

$E_p \epsilon_{\gamma} \simeq m_p m_{\pi}$

Chemical composition
 High redshift

$E_p \epsilon_{\gamma} \simeq m_p m_{\pi}$

Damiano Fiorillo

Astrophysical UHE neutrinos

 Requires dense target in source (model dependent)

UHE neutrino sources
 need not be sources of
 observable UHECRs

Damiano Fiorillo

Energy spectrum

Damiano Fiorillo

Energy spectrum

♦ 10% energy resolution is realistic achievement

• Lifetimes 10^{29} s lead to order 10 events

Angular distribution

Angular distribution

 10^{0}

Damiano Fiorillo

 10^{1} Differential event rate (> 10^7 GeV) in 10 yr of IC-Gen2 (radio), $dN_{\nu}/d\Omega_{\rm rec}$ [sr⁻¹] Event rate must account for angular resolution (3°)

Discovering dark matter

Damiano Fiorillo

 Energy is not an unambiguous signature

 Angle is unambiguous (no galactic UHE sources)

 Large statistics (10-100 events) needed to claim DM origin

 Unbinned all-sky analysis forecast

Constraining dark matter

Damiano Fiorillo

 Event-counting may provide overly weak limits if diffuse flux is detected

Energy and angular information can improve bounds by even one order of magnitude

Conclusions

Disentangling DM from astro origin in UHE neutrinos leads to:

discovery

30

Damiano Fiorillo

- Discovery power: angular signature is only unambiguous signal of

Constraint power: energy and angle can improve constraints by factor

11

Damiano Fiorillo

Backup slides

High-energy neutrino detection

- High-energy neutrinos are few and weakly interacting
- Detection requires huge volumes, so neutrinos have a chance to interact
- In IceCube, neutrino-nucleon collisions produce charged particles
- Cherenkov light is detectable

huge detectors

Damiano Fiorillo

Requires densely instrumented,

Askaryan effect

Angular distribution

Angular distribution

 10^{0}

Damiano Fiorillo

 10^{1} Differential event rate (> 10^7 GeV) in 10 yr of IC-Gen2 (radio), $dN_{\nu}/d\Omega_{\rm rec}$ [sr⁻¹] Event rate must account for angular resolution (3°)

Discovering dark matter

Damiano Fiorillo

 Energy is not an unambiguous signature

 Angle is unambiguous (no galactic UHE sources)

 Large statistics (10-100 events) needed to claim DM origin

 Unbinned all-sky analysis forecast

Discovering dark matter

Damiano Fiorillo

If angular excess is discovered, parameter reconstruction to less than factor 2

Constraining dark matter

Damiano Fiorillo

 Event-counting may provide overly weak limits if diffuse flux is detected

Energy and angular information can improve bounds by even one order of magnitude

Constraining dark matter

Damiano Fiorillo

 Event-counting may provide overly weak limits if diffuse flux is detected

Energy and angular information can improve bounds by even one order of magnitude

Neutrinos probe (BSM) particle physics

Damiano Fiorillo

Non-standard interactions ($\nu\nu$ with relic neutrinos, $\nu\chi$ with dark matter, ...)

Non-standard oscillations (sterile neutrinos, violation of equivalence principle, Lorentz invariance violation, ...)

Non-standard production (dark matter annihilation, **dark matter decay**, ...)

1. How many neutrinos in a decay?

produced? How do they propagate?

Damiano Fiorillo

Decaying dark matter

2. Where are they

3. Can we detect them?

 $m_{\rm DM}$

 au_{DM}

 $\chi \to \bar{f}f$

1. How many neutrinos in a decay?

Damiano Fiorillo

Decaying dark matter

sets the energy scale

sets the normalization

sets the energy spectrum

1. How many neutrinos in a decay?

Damiano Fiorillo

Decaying dark matter

No neutrino produced?

 $m_{\rm DM} \gtrsim 100 {\rm ~TeV}$

1. How many neutrinos in a decay?

 $P \sim \alpha_W$?

 $m_{\rm DM} \gtrsim 100 {
m TeV}$

1. How many neutrinos in a decay?

 $P \sim \alpha_W \log^2 \left(\frac{m_{\rm DM}}{m_W} \right)$

1. How many neutrinos in a decay?

Energy cascade, treated by DGLAP equations

Damiano Fiorillo

HDMSpectra (arXiv:2007.15001)

1. How many neutrinos in a decay?

do they propagate?

Damiano Fiorillo

Decaying dark matter

- 2. Where are they produced? How

3. Can we detect them?

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

How many DM particles?

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

(Mostly) isotropic

 Redshifted, dominates at low energies

spectrum

Damiano Fiorillo

Galactic production

Depends on DM distribution

Slightly anisotropic

Extragalactic production

Dark matter density

 $m_{\rm DM}$

(Mostly) isotropic

 Redshifted, dominates at low energies

1. How many neutrinos in a decay?

produced? How do they propagate?

Damiano Fiorillo

Decaying dark matter

2. Where are they

3. Can we detect them?

UHE neutrinos

UHE neutrinos

Constraints from UHE neutrinos

Damiano Fiorillo

If no event is detected, DM should produce less than 2.71 expected events (95% CL)

If astro events are detected, constraints are weaker

Chianese, DF, Hajjar, Miele, Morisi, Saviano 2103.03254

UHE neutrinos: constraints

UHE neutrinos: constraints

For $m_{\rm DM} \lesssim 100 {\rm ~TeV}$ perturbative approach

MonteCarlo simulating shower (with some limitations)

Full solution of DGLAP equations

Damiano Fiorillo

PPPC 4 DM ID (arXiv:1012.4515)

Pythia (arXiv:1401.5238)

HDMSpectra (arXiv:2007.15001)

High-energy range: lceCube

Event rates

Likelihood

 Energy binned above 60 TeV

 Effective areas from IceCube Collaboration

Poisson likelihood

Free parameters: $\Phi_0, \gamma, m_{\rm DM}, \tau_{\rm DM}$

DM can improve fit to data in two ways

High-energy range: lceCube

DM can improve fit to data in two ways

High-energy range: lceCube

Damiano Fiorillo

High-energy range: IceCube

Best fit solution

Neutrinos exclude too rapid decays

Exclusion from gamma-rays (Cohen et al., arXiv:1612.05638)

Damiano Fiorillo

High-energy range: IceCube

