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e Indirect dark matter search

« Potential y-ray signal from WIMP
annihilation

« DM subhalos are interesting
candidate
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e Indirect dark matter search

« Potential y-ray signal from WIMP
annihilation

« DM subhalos are interesting
candidate

Find exotic signals among
Fermi-LAT observation
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o Use abundant y-ray point source
catalog (4FGL)

« Compare known astrophysical
objects to unclassified objects
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o Indirect dark matter search o Use abundant y-ray point source
« Potential y-ray signal from WIMP catalog (4FGL)

annihilation « Compare known astrophysical
« DM subhalos are interesting objects to unclassified objects

candidate

Supervised: Model expected
signal, take uncertainties into
account

Weakly supervised: Model
agnostic approach
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Context 10 GeV o

30 GeV

e Dark matter annihilation can lead to a Ung

photon flux, detectable in the y-ray band
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e Signal from objects like dark matter
subhalos could already have been 1079 |
detected with Fermi-LAT AFGL J0554 148107 |
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First strategy: 4FGL Sources -—\
Compare observed, unlabelled objects with modeled
subhalo signals to constrain annihilation. I
|
1. Create realistic set of subhalo simulations °/—\ﬁo
owwy .
N
2. Assess detectability - O
strongly depends on specific dark matter model XHZ ‘
fermipy ‘
@ {
3. Look for subhalo-like spectra among unclassified o DM
sources with Bayesian machine learning ___Subhalo
Deep neural network with probability distributions to
describe trainable parameters c
Output follows probability distribution {r{]
Result: Prediction u and uncertainty o 4
Q0
A\ /\

f— Kathrin Nippel Based on arxivi2304.00032 AN " "4


https://arxiv.org/pdf/2308.00935.pdf
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7\ /\ e Compare number of sources not
classified as astrophysical origin
with expected detectability of
subhalo-like objects:

Place conservative Llimits on
annihilation cross-section

e Mass dependence due to
detectability and distinguiability

Kathrin Nippel

Supervised Classification with Bayesian NNs

-

e BNN trained on astrophysical vs subhalo
classification task can give predictions on
UNID sources

e  Get prediction mean and uncertainty on
each object. Depending on threshold a
source can be deemed candidate

Threshold
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= Weakly supervised machine learning method
Argument:

e An optimal classifier trained to distinguish the mixed samples is also optimal
CWola Setup to distinguish signal from background objects

YT YYR - Optimal classifier is given by the likelihood ratio, this relates to:
::::: : Lus s :PM1:f1ps+(1—f1)p3:flLS/B+(1—f1)
e - e faps + (1 — f2)ps faLs/p + (1 = f2)
LA L LA L Training a classifier to maximize Ly, /s, yields the optimal classifier also to
Mixed Sample 2

discriminate signal and background if f; > fa.

Mixed Sample 1
: Classifier

— Kathrin Nippel Following ArXiv:1708.02949
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Mixed Sample Background Sample
::

— Kathrin Nippel

Classification Without Labels (CWola )

= Weakly supervised machine learning method
Argument:

e An optimal classifier trained to distinguish the mixed samples is also optimal

to distinguish signal from background objects
Optimal classifier is given by the likelihood ratio, this relates to:

pmy fips + (1 = fi)ps _ fils/p + (1 = f1)
P, fops + (1= fo)ps  foLgp + (1 — fo)

Training a classifier to maximize LMl/MQ yields the optimal classifier also to
discriminate signal and background if f; > fa.

Ly v, =

e In our approach: signal = exotic source, background = astrophysical source

Idealized setup due to pure background sample
Setup test approach where f can be controlled and where we can compare to
supervised classification

Following ArXiv:1708.02949 10
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Idealized Anomaly Detector

Mixed Sample Background Sample
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Classification Without Labels (CWola )

Test case:

Signal > Pulsar spectra,

Background < AGN spectra ( + data augmentation )

True positive rate

0.60 1 Fraction of correct
0.55 | pulsar classifications
0.50 1 )

—-==- Supervised
0.45 1

004 006 008 010 012

False positive rate

1 \/\/\_\/\_’/\/\

(preliminary)

1 Fraction of incorrect

AGN classifications

Signal fraction

T

Fraction of pulsars in mixed sample

Result:

Method yields promising results, but is overall limited by small sample size
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i Results for UNID classification

e Supervised classification can help define interesting candidates among UNID
samples with corresponding prediction uncertainty

e \Weakly supervised classification applied to UNID vs astrophysical classification
task gives weaker hints for exotic objects, but is model independent

Supervised Classifier Idealized Anomaly Detector
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Conclusion and Outlook

Two machine learning approaches to learn about the abundance of exotic objects
in Fermi-LAT data:

e o

1. Supervised: Model dark matter subhalo spectra from WIMP annihilation and
subhalo population model, robust classification with Bayesian machine

learning QO O o0
/\\ ) : @) ¢ )

2. Weakly supervised: Model independent approach based on CWoLa,
intriguing first results that we aim to strengthen with more testing and more
advanced methOdS Idealized Anomaly Detector

Mixed Sample Background Sample
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