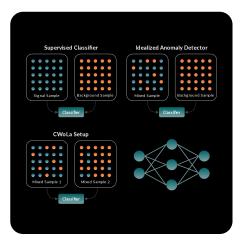
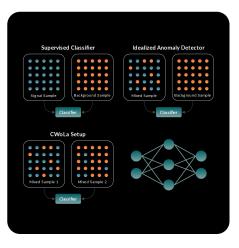


Searches for Exotic Objects among Fermi-LAT γ-Ray Sources with (Weakly) Supervised Machine Learning Michael Krämer¹, Silvia Manconi², Kathrin Nippel¹



Search for signals of new physics

- Indirect dark matter search
- Potential γ-ray signal from WIMP annihilation
- DM subhalos are interesting candidate



- Indirect dark matter search
- Potential γ-ray signal from WIMP annihilation
- DM subhalos are interesting candidate

Find exotic signals among Fermi-LAT observation

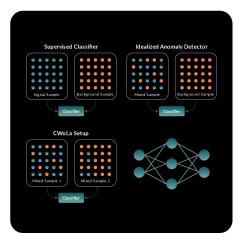
- Use abundant γ-ray point source catalog (4FGL)
- Compare known astrophysical objects to unclassified objects

Supervised Classifier		Idealized Anomaly Detector	
••••			(• • • • •
		$\bullet \bullet \bullet \bullet \bullet$	
••••	••••		••••
Signal Sample	Background Sample	Mixed Sample	Background Samp
CWoLa	Setup		
CWoLa	Setup		
CWoLa			
CWoLa	Setup		
CWoLa			
CWoLa			

- Indirect dark matter search
- Potential γ-ray signal from WIMP annihilation
- DM subhalos are interesting candidate

- Use abundant γ-ray point source catalog (4FGL)
- Compare known astrophysical objects to unclassified objects

Machine Learning Approach



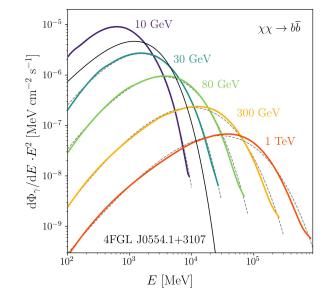
- Supervised: Model expected signal, take uncertainties into account
- Weakly supervised: Model agnostic approach

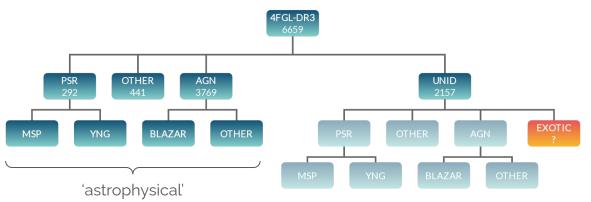
Context

 Dark matter annihilation can lead to a photon flux, detectable in the γ-ray band

$$\phi_{\gamma} = \frac{\partial \Phi_{\gamma}}{\partial E}(E, \Delta \Omega) = \frac{\langle \sigma v \rangle}{8\pi m_{\rm DM}^2} \,\mathcal{J}(\Delta \Omega) \,\frac{\partial N_{\gamma}^i}{\partial E}(E)$$

• Signal from objects like dark matter subhalos could already have been detected with Fermi-LAT

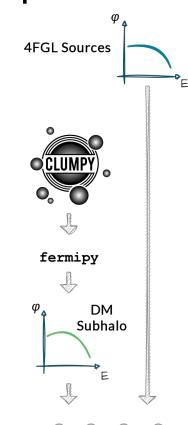


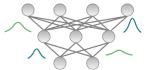


First strategy:

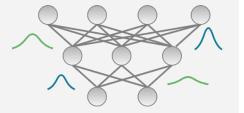
Compare observed, unlabelled objects with modeled subhalo signals to constrain annihilation.

- 1. Create realistic set of subhalo simulations
- 2. Assess detectability
 - → strongly depends on specific dark matter model
- 3. Look for subhalo-like spectra among unclassified sources with Bayesian machine learning
 - Deep neural network with probability distributions to describe trainable parameters
 - → Output follows probability distribution
 - → Result: Prediction μ and uncertainty σ

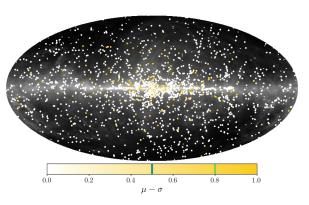




Based on arxiv:2304.00032

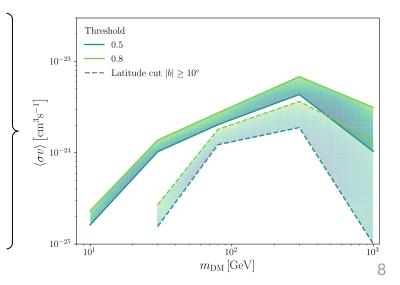


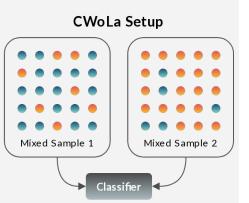
Supervised Classification with Bayesian NNs



- Compare number of sources *not* classified as astrophysical origin with expected detectability of subhalo-like objects:
 - → Place conservative limits on annihilation cross-section
- Mass dependence due to detectability and distinguiability

- BNN trained on astrophysical vs subhalo classification task can give predictions on UNID sources
- Get prediction mean and uncertainty on each object. Depending on threshold a source can be deemed *candidate*





Classification Without Labels (CWoLa 🥞)

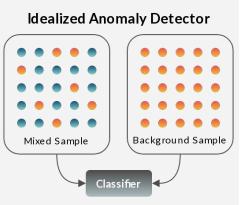
→ Weakly supervised machine learning method

Argument:

- An optimal classifier trained to distinguish the mixed samples is also optimal to distinguish signal from background objects
 - Optimal classifier is given by the likelihood ratio, this relates to:

$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 p_S + (1 - f_1) p_B}{f_2 p_S + (1 - f_2) p_B} = \frac{f_1 L_{S/B} + (1 - f_1)}{f_2 L_{S/B} + (1 - f_2)}$$

Training a classifier to maximize L_{M_1/M_2} yields the optimal classifier also to discriminate signal and background if $f_1 > f_2$.



Classification Without Labels (CWoLa 💱)

→ Weakly supervised machine learning method

Argument:

- An optimal classifier trained to distinguish the mixed samples is also optimal to distinguish signal from background objects
 - Optimal classifier is given by the likelihood ratio, this relates to:

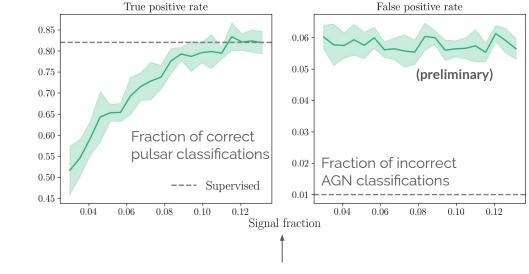
$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 p_S + (1 - f_1) p_B}{f_2 p_S + (1 - f_2) p_B} = \frac{f_1 L_{S/B} + (1 - f_1)}{f_2 L_{S/B} + (1 - f_2)}$$

- Training a classifier to maximize L_{M_1/M_2} yields the optimal classifier also to discriminate signal and background if $f_1 > f_2$
- In our approach: signal ≜ exotic source, background ≜ astrophysical source
 Idealized setup due to pure background sample
 - Setup test approach where *f* can be controlled and where we can compare to supervised classification

Classification Without Labels (CWoLa 🛒)

Test case:

Background \leftrightarrow AGN spectra (+ data augmentation)

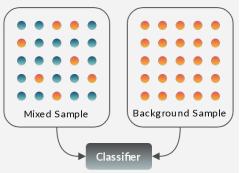


Fraction of pulsars in mixed sample

Result:

Method yields promising results, but is overall limited by small sample size

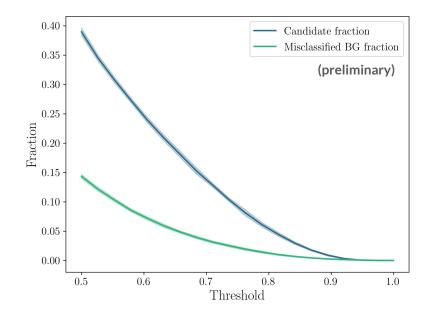
Idealized Anomaly Detector

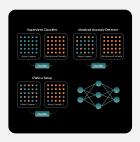


Supervised Classifier	Idealized Anomaly Detector	
Signal Sample	Mined Sample	
CWoLa Setup		

Results for UNID classification

- Supervised classification can help define interesting candidates among UNID samples with corresponding prediction uncertainty
- Weakly supervised classification applied to UNID vs astrophysical classification task gives weaker hints for exotic objects, but is model independent

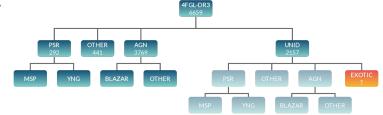




11.09.2023 Kathrin Nippel

Conclusion and Outlook

Two machine learning approaches to learn about the abundance of exotic objects in Fermi-LAT data:



1. Supervised: Model dark matter subhalo spectra from WIMP annihilation and subhalo population model, robust classification with Bayesian machine learning

2. Weakly supervised: Model independent approach based on *CWoLa*, intriguing first results that we aim to strengthen with more testing and more advanced methods

