

OINDRILA GHOSH

OSKAR KLEIN CENTRE FOR COSMOPARTICLE PHYSICS, STOCKHOLM UNIVERSITY

MPACT OF SPACE PLASMA INSTABILITIES ON TEV ASTROPHYSICS AND LIGHT DARK MATTER

TeVPA, Napoli | September 12, 2023

TEV BLAZARS AND SECONDARY GAMMA-RAYS

- TeV emissions from blazars should be reprocessed into the GeV band through inverse-Compton cooling
- Expected GeV cascade emission suppressed in the 100 GeV-1 TeV band
- Tension seems to be a universal trend in blazars observed with γ -ray telescopes

- TeV emissions from blazars should be reprocessed into the GeV band through inverse-Compton cooling
- Expected GeV cascade emission suppressed in the 100 GeV-1 TeV band
- Tension seems to be a universal trend in blazars observed with γ -ray telescopes

Collective plasma effects: instability growth, energy loss, beam and plasma heating, nonlinear damping and saturation

- TeV emissions from blazars should be reprocessed into the GeV band through inverse-Compton cooling
- Expected GeV cascade emission suppressed in the 100 GeV-1 TeV band
- Tension seems to be a universal trend in blazars observed with γ -ray telescopes

- Collective plasma effects: instability growth, energy loss, beam and plasma heating, nonlinear damping and saturation
- Pair deflections off the intergalactic magnetic field (IGMF): isotropization or creation of pair halo

- TeV emissions from blazars should be reprocessed into the GeV band through inverse-Compton cooling
- Expected GeV cascade emission suppressed in the 100 GeV-1 TeV band
- Tension seems to be a universal trend in blazars observed with γ -ray telescopes

- Collective plasma effects: instability growth, energy loss, beam and plasma heating, nonlinear damping and saturation
- Pair deflections off the intergalactic magnetic field (IGMF): isotropization or creation of pair halo
- If weak and tangled, IGMF induces magnetic diffusion and beam broadening breaking down smallangle approximation

AN EMERGING TENSION IN THE GAMMA-RAY SKY?

- Sharp spectral cutoffs at $\mathcal{O}(\text{TeV})$ energies are not observed for local blazars
- Isotropic γ -ray background (IGRB) measurements + non-observation of pair halos together imply IGMF is too feeble to prevent bright γ -ray cascade emission through ICS
- IGRB is dominated by contributions from known sources mAGN, SFG etc.
- Diffuse blazar cascade emission <10%, in strong tension with blazar models!</p>

IGRB MEASUREMENTS POINT TOWARDS BEAM-PLASMA INSTABILITIES

Blanco, **Ghosh**, Jacobsen, Linden (2023) <u>arXiv: 2303.01524</u>

If intrinsic cutoff $E_{\rm cut} \gtrsim 5$ TeV, the isotropic cascades + known components exceed the measured IGRB

COMPETING EFFECTS OF INSTABILITY GROWTH AND IGMF STRENGTH

- For realistic beam distributions participating in cascade, IGMF stronger than 10⁻¹⁴ G required to suppress plasma instabilities
- This introduces a sliding scale in critical IGMF strength ($\lambda_R \sim 1 \text{ kpc}$) in order to suppress the instabilities

Blanco, **Ghosh**, Jacobsen, Linden (2023) <u>arXiv: 2303.01524</u>

COLLECTIVE PLASMA EFFECTS: GROWTH OF UNSTABLE MODES

- Instabilities occur when the Langmuir waves undergo Cherenkov resonance $\omega = \vec{k} \cdot \vec{v}$
- Such excitations in the beam transfer energy through the resonant window
- Spectral energy density in the background of intergalactic medium (IGM) grows as $W(k) = W_0 \int_{0}^{\tau} e^{2 \operatorname{Im}(\tilde{\omega}) t} dt$ through instability losses of the beam
- Dynamics and evolution of the beam-plasma interaction is set by characteristic length scales related to the background plasma frequency $\omega_p = \sqrt{4\pi n_p e^2/m_e}$

ENERGY LOSS (PLASMA HEATING) AND BEAM RELAXATION (SELF-HEATING)

- Evolution of beam-plasma system is diffusive-dissipative described best with a Fokker-Planck equation $\frac{\partial}{\partial t}f(\mathbf{p},t) = -\frac{\partial}{\partial \mathbf{p}}[v(\mathbf{p},t)f(\mathbf{p},t)] + \frac{\partial}{\partial \mathbf{p}}\left[D(\mathbf{p},k,t)\frac{\partial}{\partial \mathbf{p}}\right]$
- Consistent with results from particle-in-cell simulations for a laboratory astrophysics experiment

Beck, Ghosh, Grüner, Pohl, Schroeder, Sigl, Stark, Zeitler 2023 arXiv: 2306.16839

0. GHOSH | TEVPA 2023 | 12.09.2023

$$-f(\mathbf{p},t)$$

BLAZAR HEATING: A MODIFIED THERMAL HISTORY

IGM heating due to a single blazar $\dot{q} = \int dE \frac{\Theta(E)}{D_{\rm pp}(E,z)} f(F_E, E, z) F_E$

0. GHOSH | TEVPA 2023 | 12.09.2023

- IGM heating due to a single blazar $\dot{q} = \int dE \frac{\Theta(E)}{D_{\rm pp}(E,z)} f(F_E, E, z) F_E$
- Average heating due to a population of blazars $\dot{Q} = \int dV d \log_{10} L d\alpha' d\Omega \tilde{\phi}_B(z; L, \alpha', \Omega) \frac{\Omega}{2\pi} \dot{q}$

0. GHOSH | TEVPA 2023 | 12.09.2023

• IGM heating due to a
single blazar
$$\dot{q} = \int dE \frac{\Theta(E)}{D_{pp}(E,z)} f(F_E, E, z) F_E$$

Average heating due to a population of blazars $\dot{Q} = \int dV d \log_{10} L d\alpha' d\Omega \tilde{\phi}_B(z; L, \alpha', \Omega) \frac{\Omega}{2\pi} \dot{q}$

(Broderick et al., 2012)

Incorporating other heating mechanisms

 $\dot{Q}_{\text{canon}} = \dot{Q}_{\text{H-I,photo}} + \dot{Q}_{\text{He-I,photo}} + \dot{Q}_{\text{He-II,photo}} + \dot{Q}_{\text{H-II,rec}} + \dot{Q}_{\text{He-III,rec}} + \dot{Q}_{\text{Compton}} + \dot{Q}_{\text{free-free}}$

Total uniform volumetric heating rate $\dot{Q} = \dot{Q}_{\text{canon}} + \dot{Q}_{\text{B}}$

IGM heating due to a single blazar $\dot{q}_B = \int dE \frac{\Theta(E)}{D_{\rm nn}(E,z)} f(F_E, E, z) F_E$

Average heating due to a population of blazars $\dot{Q}_{B} = \int dV d \log_{10} L d\alpha' d\Omega \tilde{\phi}_{B}(z; L, \alpha', \Omega) \frac{\Omega}{2\pi} \dot{q}$

(Broderick et al., 2012)

Incorporating other heating mechanisms

 $\dot{Q}_{\text{canon}} = \dot{Q}_{\text{H-I,photo}} + \dot{Q}_{\text{He-I,photo}} + \dot{Q}_{\text{He-II,photo}} + \dot{Q}_{\text{H-II,rec}} + \dot{Q}_{\text{He-III,rec}} + \dot{Q}_{\text{Compton}} + \dot{Q}_{\text{free-free}}$

- Total uniform volumetric heating rate $\dot{Q} = \dot{Q}_{canon} + \dot{Q}_{B}$
- Casting temperature-density-redshift relation during 2 < z < 3.5 as $T = T_0 \Delta^{\gamma(z)'-1}$

 $\log_{10}\left(\frac{\dot{Q}_{\rm B}/n_{\rm bary}}{1 \,{\rm eVGyr^{-1}}}\right) = 0.0315(1+z)^3 - 0.512(1+z)^2 \quad \text{(Chang et al, 2011)}$

 $+2.27(1+z) - \log_{10}\dot{Q}_{mod}$

• Degree of blazar heating $p = \log_{10} \dot{Q}_{mod}$

Effective redshift-dependence of volumetric heating from fitting 40 blazars

BLAZAR HEATING: A MODIFIED THERMAL HISTORY

Redshift evolution of index, temperature-density and temperature-redshift relation without blazar heating

Ghosh & Bhattacharyya 2309.05421

BLAZAR HEATING: A MODIFIED THERMAL HISTORY

Ghosh & Bhattacharyya 2309.05421

Redshift evolution of index, temperature-density and temperature-redshift relation for low global blazar heating

1	0
	0

BLAZAR HEATING: A MODIFIED THERMAL HISTORY

Redshift evolution of index, temperature-density and temperature-redshift relation for moderate global blazar heating

Ghosh & Bhattacharyya 2309.05421

BLAZAR HEATING: A MODIFIED THERMAL HISTORY

Ghosh & Bhattacharyya 2309.05421

- End of reionization set at z=3.5
- > Lyman- α bounds indicate IGM temperature at mean density favours intermediate to low levels of blazar heating
- Main source of uncertainty stems from Hell reionization models

5	C	٦
L	ι	J

- Void dwarfs are relatively isolated, with less rich merger and accretion history
- Worthwhile to explore cosmologies with various degrees of blazar heating
- Implications for light dark matter candidates such as axion-like particles

0. GHOSH | TEVPA 2023 | 12.09.2023

R. Brent Tully *et al* 2019 *ApJ* **880** 24

LIGHT ALPS AS A SOLUTION TO SMALL-SCALE ANOMALIES

- Cusp-vs.core problem
- Missing satellites problem
- Too-big-to-fail problem
- Rotation curve diversity problem

0. GHOSH | TEVPA 2023 | 12.09.2023

LIGHT ALPS AS A SOLUTION TO SMALL-SCALE ANOMALIES

- Cusp-vs.core problem
- Missing satellites problem
- Too-big-to-fail problem
- Rotation curve diversity problem

- Light ALPs with mass m_a behaves like a fluid and has non-zero sound speed $c_s^2 = \frac{\overline{4m_a^2 a^2}}{1 + \frac{k^2}{4m_a^2 a^2}}$
- This introduces an axionic Jeans scale $k_{J,a} = (16\pi G\bar{\rho})^{1/4} m_a^{1/2}$, with $\bar{\rho} = \rho_0 a^3$

LIGHT ALPS AS A SOLUTION TO SMALL-SCALE ANOMALIES

- Cusp-vs.core problem
- Missing satellites problem
- Rotation curve diversite of THE ISSUES WITH AU problem
 RESOLVES MANY OF THE ISSUES WITH AU

• Light ALP- SCALES s
$$m_a$$
 behaves like a fluid and has composed composed $c_s^2 = \frac{\frac{k^2}{4m_a^2a^2}}{1 + \frac{k^2}{4m_a^2a^2}}$

This introduces an axionic Jeans scale $k_{J,a} = (16\pi G\bar{\rho})^{1/4} m_a^{1/2}$, with $\bar{\rho} = \rho_0 a^3$

BLAZAR HEATING: A MODIFIED THERMAL HISTORY

Ghosh & Bhattacharyya 2309.05421

https://doi.org/10.22323/1.444.1448

Characteristic masses of void dwarfs based stellar kinematics data from KCWI (de Los Reyes et al, 2023) translates to ALP masses of $m_a \sim 10^{-10.5} - 10^{-8.5}$ eV in presence of blazar heating (shown for p = 5.5 and p = 6)

BLAZAR HEATING: A MODIFIED THERMAL HISTORY

Ghosh & Bhattacharyya 2309.05421

https://doi.org/10.22323/1.444.1448

Characteristic masses of field dwarfs based stellar kinematics data from KCWI (de Los Reyes et al, 2023) translates to ALP masses of $m_a \sim 10^{-10} - 10^{-9} \text{ eV in}$ presence of blazar heating (shown for p = 5.5 and p = 6)

KEY TAKEAWAYS

- GeV-TeV tension combined with absence of pair halo and IGRB excess in the gamma-ray sky point towards collective plasma effects
- While propagating through plasma, pair beams suffer from virulent instabilities, however only accessible through a narrow resonance window
- In absence of significant inhomogeneities in the IGM, instability losses heat the intergalactic medium, altering thermal histories locally
- \triangleright Strongly supported by Lyman- α observations, this raises the entropy floor and modifies the filtering scale
- In presence of blazar heating, recent void and field dwarf measurements translate to a favoured axion mass range of $m_a \sim 10^{-10.5} - 10^{-8.5}$ eV and $m_a \sim 10^{-10} - 10^{-9}$ eV respectively

Thank you!

oindrila.ghosh@fysik.su.se

BACKUP: MAGNETIC DIFFUSION LEADS TO PAIR BEAM BROADENING

- For a 2D Gaussian pair beam distribution at injection $f_{b,\theta}(\theta,p) = \frac{1}{\pi\Delta\theta^2} \exp\left\{-\left(\frac{\theta}{\Delta\theta}\right)^2\right\}, \quad 0 \le \theta \le \pi$
- Magnetic diffusion in the beam due to weak tangled IGMF

$$\Delta \theta = \frac{m_e c}{p} \sqrt{1 + \frac{2}{3} \lambda_B \lambda_{\rm IC} \left(\frac{e B_{\rm IGM}}{m_e c}\right)^2}$$

Alawashra & Pohl, 2022

BACKUP SLIDES: REACTIVE GROWTH RATE

- For cold beams propagating through cold plasma growth is reactive
- Hydrodynamic calculation yields

 $\operatorname{Im}(\tilde{\omega})_{r} = \frac{\sqrt{3}}{2^{4/3}} \omega_{p} \left(\frac{n_{b}}{\gamma_{b} n_{p}}\right)^{1/3} \left(\left(\frac{k_{\perp}}{k}\right)^{2} + \frac{1}{\gamma_{b}^{2}} \left(\frac{k_{\parallel}}{k}\right)^{2}\right)^{1/3}$

BACKUP: MOMENTUM DIFFUSION IN COSMIC PAIR BEAMS

Prompt flux $\frac{d^2 N_{\gamma}}{dE_{\gamma} dt} = \frac{(\alpha - 1)L_{\gamma,iso}(t)}{4\pi D_L^2 E_{\gamma,pk}^2} \left(\frac{E_{\gamma}}{E_{\gamma,pk}}\right)^{\alpha}$, $\left(E_{\gamma,pk} < E_{\gamma} < E_{cut}\right)^{\alpha}$

Luminosity distance $D_{\rm L}(z) = \frac{(1+z)}{H_0} \int_0^z dz' \left[\Omega_r (1+z')^4 + \Omega_m (1+z')^3 + \Omega_\Lambda \right]^{-1/2}$

BACKUP: MOMENTUM DIFFUSION IN COSMIC PAIR BEAMS

Delayed emission due to pair deflection, ICS and momentum diffusion $\frac{d^2 N_{\text{delayed}}}{dt_{\text{obs}} dE_{\gamma}} = \int d\gamma_e \frac{dN_e}{d\gamma_e} \frac{3\sigma_T}{4\gamma_e^2} \frac{d\langle r \rangle}{dt_{\text{obs}}} \int d\epsilon_{\gamma,\text{CMB}} n_{\text{CMB}} \left(\epsilon_{\gamma,\text{CMB}}\right) \frac{f(x)}{\epsilon_{\gamma,\text{CMB}}}$

• However $\langle \theta_{\text{broad}}^2(\theta) \rangle \ll \langle \theta_{\text{IC}}^2(\theta) \rangle$, momentum diffusion is not significant for astrophysical pair beams

BACKUP: MOMENTUM DIFFUSION IN COSMIC PAIR BEAMS

Pairs at production travels to the observer at a speed of $\frac{d\langle r\rangle}{dt_{\rm obs}} = \frac{2c}{(1+z)\left[\theta^2 + \Theta^2/3\right]}$

Relevant quantity: IC mean free path $\ell_{\rm ICS} = \frac{1}{\sigma_{\rm T} n_{\rm CMB}} \approx 10 \ {\rm kpc} \ (1+z)^{-3}$

scale $\lambda_F = 2\pi a/k_F$ can be applied

Generally,
$$\frac{1}{k_F^2(t)} = \frac{1}{D_+(t)} \int_0^t dt' a^2(t') \frac{1}{D_+(t)} \int_0^t \frac{dt''}{dt''} \int_{t'}^t \frac{dt''}{a^2(t'')} dt''$$

Corresponding filtering mass $M_F = -\frac{1}{3}\pi \overline{\rho} \lambda_F^3$

Taking into account pressure dilution owing to Hubble expansion, a filtering

 $\dot{D}_{+}(t') + 2H(t')\dot{D}_{+}(t')$ $k_{I}^{2}(t')$

BACKUP: INHOMOGENEITIES IN IGM

are confined within narrow Δk

Λ is the plasma parameter, and in longitudinal direction $\mu_{\parallel} = \frac{c}{\omega_p L_{\parallel}} \frac{\gamma_b}{\alpha}$

When beam opening angle $\theta_0 \sim 1/\mu \Lambda$, instability is weak as resonant modes

BACKUP: FERMI-LAT + H.E.S.S. COMBINED ANALYSIS, LIMITS ON IGMF

0. GHOSH | TEVPA 2023 | 12.09.2023

Fermi-LAT Collaboration, 2023

