Dark Matter Capture, Thermalisation and Annihilation in Neutron Stars

Sandra Robles

Fermi National Accelerator Laboratory

in collaboration with Nicole F. Bell, Giorgio Busoni, Michael Virgato, Anthony W. Thomas, & Theo F. Motta <u>arXiv:2004.14888</u> (JCAP), <u>arXiv:2010.13257</u> (JCAP), <u>arXiv:2012.08918</u> (PRL), <u>arXiv: 2108.02525</u> (JCAP), arXiv:23XX.XXXX

Fermilab

Introduction **Direct Detection**

- Stringent constraints on spin-independent (SI) interactions.
- Restricted by

Nuclear mass of the target

Recoil threshold

Less sensitivity to interactions with momentum or velocity suppressed cross sections.

Sandra Robles (Fermilab)

Introduction

Much weaker sensitivity to spin-dependent interactions.

- **Direct Detection**

- DM scatters, loses energy, becomes gravitationally bound to the Sun. Gould 1987
- Accumulates and annihilates in the centre of the Sun.
- In equilibrium, annihilation rate proportional to the DM-nucleon scattering cross section.
- Neutrinos from DM annihilation can be detected in the Earth (Super-Kamiokande, Antares, IceCube).

DM CAPTURE IN NEUTRON STARS

DM Capture in the Sun

DM

SuperK

Image credit: Institute for Cosmic Ray Research, The University of Tokyo

Captured DM annihilating in the Sun

Limits on the SI cross section from DM annihilation to neutrinos much weaker than DD.

Sandra Robles (Fermilab)

5 >

(<)

DM capture in Neutron Stars

- - \rightarrow Possible detection with JWST NIRCam (SNR = 5)

Extremely efficient at capturing DM, capture probability order 1 for $\sigma_{n\chi} \sim O(10^{-45} - 10^{-44} \text{cm}^2)$ Capture plus subsequent annihilation can heat up local NSs (10 pc) Baryakhtar et al. arXiv:1704.01577 (PRL) Chatterjee et al. arXiv: 2205.05048

 $\left(< \right)$

Neutrons Stars

- The densest stars known.
- Supported against collapse by neutron degeneracy pressure.

Image Credit: Feryal Özel

- Outer crust: Heavy ions, e^{-}
- Inner crust: Free n, p, e^-

 $P = P(\rho)$ APR BSk ➡ SLy, ...

Equation of State (EoS)

Hydrostatic Equilibrium

Tolman-Oppenheimer-Volkoff (TOV) equations

DM capture in Neutron Stars

 $M_{\star} = 1 M_{\odot}$

neutrons 89%

EoS: QMC

$M_{\star} = 1.9 M_{\odot}$

D

%

 e^-

 μ^{-}

neutrons 81%

EoS: QMC

p

e

 μ

9%

3% 5%

2%

DM CAPTURE IN NEUTRON STARS

Targets

- Baryons
 - Strongly interacting
 - Pauli blocking (interacting Fermi gas)
- Leptons
 - Relativistic
 - Pauli blocking (free Fermi gas)

DM capture in Neutron Stars

- Different kinematic regime from DM capture in the Sun.
 - DM accelerated to quasi-relativistic speeds
 - TOV equations and Schwarzchild metric

Scattering off a Fermi gas of interacting baryons

$$B(r) \sim 1 - v_{esc}^2(r)$$

- Bell, Busoni, SR & Virgato, arXiv: 2004.14888
 - Sandra Robles (Fermilab)

9 >

<

DM capture in Neutron Stars Scattering off a Fermi gas of interacting baryons

Two important effects missing in all previous calculations:

Momentum dependence of the hadronic matrix elements

Nucleon couplings

 $Q_0 \sim 1 \,\mathrm{GeV}$

Nucleons undergo strong interactions, free Fermi gas is not a good approximation.

Nucleon effective mass

Bell, Busoni, Motta, SR, Thomas & Virgato, arXiv: 2012.08918, arXiv: 2108.02525

DM CAPTURE IN NEUTRON STARS

Sandra Robles (Fermilab)

Scattering Operators for Fermionic DM

Operator	Coupling	Interaction	Momentum supressed
$ar{\chi}\chi\;ar{q}q$	y_q/Λ^2	SI	×
$ar{\chi}\gamma^5\chi\;ar{q}q$	iy_q/Λ^2	SI	
$ar{\chi}\chi~ar{q}\gamma^5 q$	iy_q/Λ^2	SD	
$ar{\chi}\gamma^5\chi\;ar{q}\gamma^5q$	y_q/Λ^2	SD	
$ar{\chi}\gamma_\mu\chi\;ar{q}\gamma^\mu q$	$1/\Lambda^2$	SI	×
$ar{\chi}\gamma_{\mu}\gamma^{5}\chi\ ar{q}\gamma^{\mu}q$	$1/\Lambda^2$	SI, SD	
$ar{\chi}\gamma_\mu\chi\;ar{q}\gamma^\mu\gamma^5 q$	$1/\Lambda^2$	SD	
$ar{\chi}\gamma_{\mu}\gamma^{5}\chi\ ar{q}\gamma^{\mu}\gamma^{5}q$	$1/\Lambda^2$	SD	×
$\bar{\chi}\sigma_{\mu\nu}\chi\ \bar{q}\sigma^{\mu\nu}q$	$1/\Lambda^2$	SD	×
$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\;\bar{q}\sigma^{\mu\nu}q$	i/Λ^2	SI	

DM-neutron capture rate in NSs

Accounting for nucleon structure and strong interactions suppresses the capture rate

Bell, Busoni, Motta, SR, Thomas & Virgato, arXiv: 2012.08918, arXiv: 2108.02525

Sandra Robles (Fermilab)

12 >

<

Sandra Robles (Fermilab)

13 >

 $\left(< \right)$

NS sensitivity to SI DM-nucleon scattering cross section $ar{\chi}\chi\,ar{q}q$

Bell, Busoni, Motta, SR, Thomas & Virgato, arXiv: 2108.02525

DM CAPTURE IN NEUTRON STARS

NS sensitivity to SD DM-neutron scattering cross section $\bar{\chi}\gamma_{\mu}\gamma^{5}\chi \ \bar{q}\gamma^{\mu}\gamma^{5}q$

Bell, Busoni, Motta, SR, Thomas & Virgato, arXiv: 2108.02525

DM CAPTURE IN NEUTRON STARS

Sandra Robles (Fermilab)

DM Thermalisation in NSs

• Capture

 1^{st} stage: N_1 scatterings

 t_1^{therm}

DM CAPTURE IN NEUTRON STARS

Sandra Robles (Fermilab)

Further scatterings

Thermalised

2^{nd} stage: N_2 scatterings

 $t_2^{\rm therm}$

$$t_{\rm therm} \simeq t_2^{\rm therm}$$

 \ll

<

DM Thermalisation in NSs

- After $N_1 + N_2$ scatterings DM reaches equilibrium temperature T_{eq}
- Thermalisation time (Pauli Blocking) Sum of average time between collisions

Final energy transfer = T_{eq}

$$t_{\text{therm}} \simeq \sum_{n=N_1}^{N_2} \frac{1}{\Gamma^-(K_n)}.$$

Bertoni, Nelson & Reddy, arXiv: 1309.1721

Sandra Robles (Fermilab)

DM Thermalisation in NSs

< 18 >

DM Thermalisation in NSs **EFT** operators

Captured DM thermalises in ~ 1 Myr (unsuppressed interactions)

Capture and Annihilation Equilibrium

Number of accumulated DM particles depends on the capture, evaporation and annihilation rates

$$\frac{dN_{\chi}}{dt} = C - EN_{\chi} - AN_{\chi}^2$$

When evaporation is negligible $m_{\chi} \gtrsim m_{evag}$

$$N_{\chi}(t) = \sqrt{\frac{C}{A}} \tanh\left(\frac{t}{t_{eq}}\right)$$

• If
$$t \gg t_{eq}$$
 $\Gamma_{ann} = \frac{1}{2}C(\sigma)$

Annihilation rate:
$$\Gamma_{ann} = \frac{1}{2}AN_{\chi}^2$$

 $p \qquad m_{evap} \sim \mathcal{O}(10 \text{eV})$ Bell, Busoni, SR & Virgato,
arXiv: 2010.13257
where $t_{eq} = \frac{1}{\sqrt{CA}}$ $A \simeq \frac{\langle \sigma_{ann} v_{\chi} \rangle}{(2\pi)^{3/2} r_{\chi}^3}$

capture - annihilation equilibrium

< 20 >

DM Annihilation in NSs

If DM has not yet thermalized

$$t_{\rm eq} = \frac{1}{\sqrt{CA}} \left(\frac{t_{\rm therm} + t}{t} \right)^{\frac{\alpha}{2(2+n)}}$$

Annihilation final states $\chi \chi \to t\bar{t}, b\bar{b}, c\bar{c}, \pi^+\pi^-$

Annihilation to leptons Model dependent

Pauli blocked

Bell, Busoni, SR & Virgato, in preparation

Sandra Robles (Fermilab)

< 21 >

Capture-annihilation equilibrium reached in ~1 yr (s-wave) up to 100 kyr (p-wave).

DM-induced Heating of NSs

EFT operators

22 >

<

Summary

- Improved calculation of the DM capture in neutron stars for (non-)relativistic, degenerate targets. Strong interactions in NSs require treatment beyond the free Fermi gas approximation.
- Neutron stars could constrain different types of interactions, including those that are velocity and momentum suppressed.
- Captured DM would thermalise in ~ 1 Myr (unsuppressed interactions), momentum suppressed operators will need longer than the age of the Universe.
- Capture-annihilation equilibrium reached for all interactions in ~ 1 yr up to 100 kyr.
- Constraining DM interactions using DM-induced anomalous heating of neutron stars require

Better understanding of the cooling process in neutron stars.

Thank you for your attention!

DM CAPTURE IN NEUTRON STARS

< 24 >

