

For the IceCube collaboration

IceCube Search for High Energy Neutrino Emission from X-ray Bright Seyfert Galaxies

Sep 14th, 2023

TeVPA 2023, Napoli, Italy

Theo Glauch, TUM Ali Kheirandish, UNLV Tomas Kontrimas, TUM <u>Qinrui Liu, Queen's U</u> Hans Niederhausen, MSU <u>Shiqi Yu, MSU</u>

Motivation: NGC 1068

All-sky scan found hot spot at NGC 1068 location.
In catalog search (110 sources), at NGC 1068:
79 candidates; spectral index = 3.2 ± 0.2

single source significance 5.2 σ (local)

4.2 σ post-trial significance of evidence!

2

Why NGC 1068?

Seyfert galaxy Compton thick environment, column density ~ 10²⁵ cm⁻² High level of star formation Bright in X-ray High-energy gamma-ray likely to be obscured Proposed possible source of high-energy CR and neutrinos: Silberberg, Shapiro (1979, 1983)

Where could neutrinos be produced?

Murase and Stecker arXiv:2202.03381

- AGN outflows/winds
- 🛛 faint jet

AGN core region (e.g. corona)

Find more similar sources! More model-dependent studies on neutrino emission₃ are needed!

Disk-corona Model

- AGN cores optically thick for GeV-TeV gamma rays are one of the best neutrino source candidates.
- Acceleration of ions via stochastic and/or magnetic reconnection processes.
- In Seyfert galaxies, magnetized coronae can be formed due to accretion and magnetic dissipation.
- The disk-corona model can accommodate neutrino flux at medium energies (~30 TeV).

Bright X-ray emission

Disk-corona Model

- Neutrino flux predictions based on the High CR pressure scenario of the disk-corona model.
 - Most promising for identification with current data.
- Thermal X-ray luminosity serves as the proxy of CR injection and neutrino emission: $L_v \propto L_v \propto L_{CR}$
 - Spectra normalized by CR pressure.
 - CR injection function: $F_{p, inj} \propto f_{inj} L_{X-ray}$
 - Injection fraction: CR to thermal ratio

 $f_{\rm inj} \propto {\rm P_{CR}}/{\rm P_{th}}$

CR to thermal pressure ratio

Source Selection

g/cm²/s

The BAT AGN Spectroscopic Survey

Centaurus A

NGC4151

Circinus

NGC7582

NGC4388

ES0138-1

NGC6240

27 (+NGC 1068) sources Northern Sky Southern Sky 14 sources

Northern Sky Analyses: Catalog & Stacking Searches

Catalog:

- Using disk-corona model, parameter: n_s
- Using the power-law spectrum, parameter: n_s , γ Stacking:
 - Using disk-corona model with weights = n_{exp}

* NGC 1068 is excluded (27 sources) to avoid bias. Q. Liu & S. Yu | TeVPA 2023 Same Northern Sky Muon Track sample as <u>IceCube Science</u> <u>2022</u> with ~1.7 yr more data. ~20% increase in statistics.

 Improved analysis method (kernel density estimation) is also applied.

Northern Sky Result: Catalog Search

In addition to NGC 1068, 2 sources have pre-trial significances above 3σ .

	spectral model	$n_{ m exp}$	\mathbf{TS}	$\hat{n}_{ m s}$	$\hat{\gamma}$	$p_{ m local}$	$p_{ m global}$	$n_{ m UL}$
Catalog Search 1								
CGCG 420-015	disk-corona	3.2	11.0	31		$2.4 imes 10^{-4} (3.5 \sigma)$	$6.5 imes 10^{-3} (2.5 \sigma)$	46.4
NGC 4151	disk-corona	13.1	9.0	23		$6.4 imes 10^{-4}(3.2\sigma)$	_	39.5
NGC 1068 ^(*)	disk-corona	44.6	23.4	48	—	$3.0 imes 10^{-7}(5.0\sigma)$	—	61.4
Catalog Search 2								
NGC 4151	power-law		7.4	30	2.7	$6.4 \times 10^{-4} (3.2 \sigma)$	$1.7 \times 10^{-2} (2.1 \sigma)$	61.4
CGCG 420-015	power-law	, <u> </u>	9.2	35	2.8	$3.0 imes 10^{-3} (2.7 \sigma)$	_	62.1
NGC 1068 ^(*)	power-law		29.5	94	3.3	$8.0 imes 10^{-8} (5.2 \sigma)$	_	94.9

 $3.5\sigma \rightarrow 2.5\sigma$ (27 sources)=> post-trials **2.3** σ (2 flux assumptions)

Northern Sky Result: Catalog Search

In addition to NGC 1068, 2 sources have pre-trial significances above 30.

NGC 1068 ~14 Mpc ~7 Log(M/M⊙) LogL_x^{2-10keV}~42.9 erg/s (NuSTAR and XMM-Newton: LogL_x^{2-10keV}~43.8 erg/s)

CGCG 420-015 ~130 Mpc ~8.3 Log(M/M☉) LogL_x^{2-10keV}~44 erg/s NGC4151 ~16 Mpc ~7.6 Log(M/M^o) LogL_x^{2-10keV}~42.3 erg/s

Q. Liu & S. Yu | TeVPA 2023

9

Northern Sky Result: CGCG 420-015

- Supermassive BH: 2x10⁸
 M[⊙]
- High X-ray luminosity
 (LogL_x^{2-10keV} ~44 erg/s)
- Compton thick, highly obscured

Model fit finds better significance and localization.
The best-fit flux is a factor of ~10 larger than the expectation

Northern Sky Result: NGC 4151

•

- ~16 Mpc
- ~4×10⁷ M☉
- X-ray luminosity of LogL_X^{2-10keV} ~42.3 erg/s
- $L_{\gamma}/L_{X} < 0.25\%$

- ~0.18 degree from the 4th hottest spot in <u>IceCube Science</u> 2022
- Most significant in power-law analysis, comparable significance in both flux assumptions.

Northern Sky Result: Binomial Test

 The significance of observing an excess of k sources with local p-values below or equal to a chosen threshold p_k for the two flux assumptions analyzed.

Optimized to search for a smaller number of emitters in a source list.

Larger significance with the model fit
 2.9σ excess in the binomial test using model fit

 k=2: CGCG 420-015 and NGC 4151
 2.7σ of post-trial significance

 *Would be 4σ if NGC 1068 included

Northern Sky Result: Stacking

	spectral model	$n_{ m exp}$	\mathbf{TS}	$\hat{n}_{ m s}$	$\hat{\gamma}$	$p_{ m local}$	$p_{ m global}$	$n_{ m UL}$
Stacking Searches								
Stacking (excl.)	disk-corona	154	0.1	5	_	$2.4 imes 10^{-1} (0.7 \sigma)$	$2.4 imes 10^{-1}(0.7\sigma)$	51.1
Stacking (incl.) $(*)$	disk-corona	199	11.2	77	-	$1.1 imes 10^{-4} (3.7 \sigma)$		128

- No significant emission is found in the stacking search excluding NGC 1068.
 - The upper limit constrains the collective emission to ~30% of the expectation.

Northern Sky Result: Discussions

- It's possible that there is a subset of sources that have high CR-thermal pressure (optimistic scenario) similar to NGC 1068. But it's also possible that there are not many that share similar properties. Moderate scenarios are only testable with next-generation neutrino telescopes.
 - In environments with high levels of column densities, there is a large uncertainty on the intrinsic X-ray flux measurements which can significantly change expectations.
 - e.g. for NGC 1068, NuSTAR & XMM-Newton report higher L_X than BASS, which leads to more moderate CR pressure which will reduce the expectations of other sources.
- In order to find more sources and verify the models, we need more studies on the multi-wavelength emission of the sources.

Northern Sky Result: Discussions

- It's possible that there is a subset of sources that have high CR-thermal pressure (optimistic scenario) similar to NGC 1068. But it's also possible that there are not many that share similar properties. Moderate scenarios are only testable with next-generation neutrino telescopes.
- In environments with high levels of column densities, there is a large uncertainty on the intrinsic X-ray flux measurements which can significantly change expectations.
 - e.g. for NGC 1068, NuSTAR & XMM-Newton report higher L_X than BASS, which leads to more moderate CR pressure which will reduce the expectations of other sources.
- In order to find more sources and verify the models, we need more studies on the multi-wavelength emission of the sources.

Northern Sky Result: Discussions

- It's possible that there is a subset of sources that have high CR-thermal pressure (optimistic scenario) similar to NGC 1068. But it's also possible that there are not many that share similar properties. Moderate scenarios are only testable with next-generation neutrino telescopes.
- In environments with high levels of column densities, there is a large uncertainty on the intrinsic X-ray flux measurements which can significantly change expectations.
 - e.g. for NGC 1068, NuSTAR & XMM-Newton report higher L_X than BASS, which leads to more moderate CR pressure which will reduce the expectations of other sources.
- In order to find more sources and verify the models, we need more studies on the multi-wavelength emission of the sources.

Southern Sky Sensitivities

A similar study focusing on the Southern Sky is performed with an improved track selection technique.

Stacking analysis (w/o Cen A) expect to see a strong signal → selected sources together produce 10% of the measured diffuse flux at 10 TeV (space for other potential sources!)

Summary and Outlook

- ➤ We incorporate the disk-corona model for catalog and stacking searches to study high-energy neutrino emission from X-ray bright Seyfert galaxies. The generic power-law spectrum is also studied for a catalog search.
- With Northern Sky:
 - No significant excess observed in the stacking search, we constrain the collective neutrino emission from those sources.
 - Our results hint at neutrino emission from two sources in addition to NGC 1068, i.e. NGC
 4151 and CGCG 420-015 with 2.7σ.
- With Southern Sky: similar studies are performed with an improved track selection technique and sensitivities are shown.
- → Future identification is promising, with important multi-messenger input.
- The next-generation detectors with improved sensitivities covering the whole sky will advance searches in the upcoming years.

Thank you!

Aachen Collaboration meeting

2023

adison meeting 2022

Overflow slides

RESEARCH

RESEARCH ARTICLE

Evidence for neutrino emission from the nearby active galaxy NGC 1068

IceCube Collaboration*+

Motivation: NGC 1068

Earth absorption helps removing muon background

Northern Sky Results

Intrinsic X-ray flux is $F_{2-10\text{keV}}^{\text{intr}} \times 10^{-12} \text{erg cm}^{-2} \text{ s}^{-1}$

upper limit fluxes

 $\phi_{90\%}^{-\gamma} (E/1\text{TeV})^{-\gamma} \times 10^{-13} \,\text{TeV}^{-1} \text{cm}^{-2} \,\text{s}^{-1}$

					model					powerlaw		
Source	DEC	$\mathbf{R}\mathbf{A}$	$F_{2-10 \mathrm{keV}}^{\mathrm{intr}}$	n_{exp}	$\hat{n}_{ m s}$	$-\log_{10}p$	$n_{ m UL}$	\hat{n}_s	$\hat{\gamma}$	$-\log_{10}p$	$\phi^{E^{-2}}_{90\%}$	$\phi^{E^{-3}}_{90\%}$
NGC 1068	-0.0	40.7	268.3	44.5	47.5	6.5	61.4	94.1	3.3	7.1	8.5	39.0
NGC 4388	12.7	186.4	71.7	21.4	0.0	0.0	13.0	2.0	1.9	0.9	3.9	16.7
NGC 6240	2.4	253.2	411.1	16.8	0.0	0.0	13.4	0.0	4.3	0.0	1.5	5.8
NGC 4151	39.4	182.6	84.8	13.1	22.5	3.2	39.5	30.1	2.7	3.2	10.9	38.7
Z164-19	27.0	221.4	179.5	8.6	0.0	0.0	12.0	3.3	2.0	0.7	4.2	15.7
UGC 11910	10.2	331.8	157.5	8.5	0.0	0.0	12.9	6.4	4.3	0.3	2.2	8.5
NGC 5506	-3.2	213.3	115.6	8.1	0.0	0.0	9.0	0.0	1.6	0.0	1.9	6.4
NGC 1194	-1.1	46.0	117.8	7.6	4.4	0.6	15.2	27.7	3.7	0.9	2.9	13.1
Mrk3	71.0	93.9	113.6	7.4	0.0	0.0	10.9	0.0	4.3	0.0	4.4	11.4
MCG+8-3-18	50.1	20.6	99.4	6.3	0.0	0.0	10.8	0.0	4.3	0.0	3.3	9.3
UGC 3374	46.4	88.7	65.1	4.6	0.0	0.0	11.0	0.0	4.3	0.0	3.2	9.0
NGC 3227	19.9	155.9	37.2	4.0	0.0	0.0	14.5	0.0	1.7	0.0	2.1	6.8
4C+50.55	51.0	321.2	97.0	4.0	4.6	0.8	14.9	9.7	3.2	0.5	5.0	15.9
NGC 7682	3.5	352.3	47.9	4.0	2.3	0.7	18.8	0.0	4.3	0.0	1.6	6.2
IRAS05078 + 1626	16.5	77.7	46.1	4.0	0.0	0.0	12.2	0.0	4.3	0.0	2.0	6.9
$2 {\rm MASXJ} 20145928 {+} 2523010$	25.4	303.7	78.6	3.8	0.0	0.0	11.9	0.0	4.3	0.0	2.3	7.6
Mrk 1040	31.3	37.1	40.6	3.7	0.0	0.0	11.7	32.9	4.3	0.9	5.1	19.1
LEDA136991	68.4	6.4	42.6	3.7	0.0	0.0	11.4	3.8	4.1	0.2	5.0	13.4
Mrk 1210	5.1	121.0	32.9	3.2	0.0	0.0	13.3	0.0	4.3	0.0	1.7	6.4
CGCG 420-15	4.1	73.4	50.5	3.2	30.7	3.6	46.4	35.5	2.8	2.5	5.2	25.9
MCG+4-48-2	25.7	307.1	31.6	3.1	22.1	2.3	31.8	45.2	3.2	2.1	7.2	29.0
3C111	38.0	64.6	61.5	3.1	0.0	0.0	11.6	15.7	4.3	0.5	4.2	13.6
UGC 5101	61.4	144.0	45.4	2.6	4.8	1.0	17.6	8.7	3.0	0.7	6.9	21.7
3C382	32.7	278.8	49.4	2.4	0.0	0.0	11.6	34.9	4.3	1.0	5.4	20.1
Mrk 110	52.3	141.3	34.4	2.1	0.0	0.0	10.9	0.0	4.3	0.0	3.4	9.6
3C 390.3	79.8	280.5	44.4	1.8	0.0	0.0	12.6	0.0	4.3	0.0	6.9	19.7
NGC 3516	72.6	166.7	30.7	1.6	0.0	0.0	11.8	30.0	4.3	0.6	8.8	26.0
Cygnus A	40.7	299.9	32.1	1.6	3.7	0.7	15.2	2.9	2.1	0.7	5.3	18.2

Northern Sky Result: NGC 1068

- ~14 Mpc
 ~10⁷ M☉
- X-ray luminosity of LogL_x^{2-10keV} ~42.9 erg/s

best fit

NGC 1068

23

Northern Sky Results

Likelihood Scans

Profile likelihood scans for the flux parameters for the top sources with the power-law fit.

NGC 1068

better modeling of directional distributions of individual neutrinos in particular well reconstructed events (at TeV energies)

energy reconstruction: neural network provides more accurate and more precise energy estimates especially at TeV energies

A History of Neutrino Astronomy in Antarctica

