

Multi-Messenger Modeling of Neutrino-Coincident TDEs

Chengchao Yuan

Deutsches Elektronen-Synchrotron DESY TeVPA2023, 09/14 - Napoli, Italy

HELMHOLTZ

Tidal disruption events

When a massive star passes close enough to a SMBH

- The star can be ripped apart by the tidal force
- ~ half of the star's mass remains bounded by the SMBH gravitational force
- Fallback rate $\propto t^{-5/3}$
- Mass accretion -> months/year-long flare
- Multi-wavelength black body (bb) emissions in optical/UV (OUV) bands.
- Some TDEs are observed in X-ray and infrared (IR) ranges, e.g., AT2019dsg

Tidal disruption of stars by black holes of $10^6 - 10^8$ solar masses in nearby galaxies

ARTICLES

Martin J. Rees

NATURE VOL. 333 9 JUNE 1988

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Stars in galactic nuclei can be captured or tidally disrupted by a central black hole. Some debris would be ejected at high speed; the remainder would be swallowed by the hole, causing a bright flare lasting at most a few years. Such phenomena are compatible with the presence of $10^6-10^8 M_{\odot}$ holes in the nuclei of many nearby galaxies. Stellar disruption may have interesting consequences in our own Galactic Centre if $a \sim 10^6 M_{\odot}$ hole lurks there.

a bo rippod apart by the tidal force speed; the remainder wou

Martin J. Rees, Nature 1988

AT2019dsg

- ZTF (optical: g, r) + Swift UVOT (UV)
- Swift-XRT/XMM-Newton: X-ray (0.3-10 keV)
- $z \sim 0.051$, $d_L \sim 230$ Mpc
- Potential correlation to neutrino event IC191001A

Measured black body spectra:

- X-ray: $T_X = 72 \text{ eV}$, from hot accretion disk
- OUV: $T_{OUV} = 3.4 \text{ eV}$, from photosphere (nearly constant)

Tidal Disruption Events

- Neutrinos could be produced in the accretion disks, winds, or jets
- Three TDEs may be associated with IceCube neutrino events (so far)
 - 1. <u>AT2019dsg (IC191001A)</u>
 - 2. AT2019fdr (IC200530A) 3. AT2019aalc (IC191119A)

Disks - Hayashaki & Yamazaki 19 (HY19) Wide angle winds - Fang 20 Stream-stream - Dai + 15,, HY19, Jets - Wang + 11,Wang & Liu 16, Dai & Fang 17, Lunardini & Winter 17, Senno + 17

Questions for Neutrino-Coincident TDEs

- Where are X-ray (XRT, eROSITA, NICER), γ-ray (Fermi, HAWC uplimits) and neutrino emission produced?
- Temporal signatures: delayed infrared and neutrino emissions
- Multi-messenger implications, e.g., from X-ray/ γ -ray up limits to neutrino constraints

What we have

- Thermal optical/ultraviolet, X-ray, and infrared spectra/light curves.
- Up limits from γ -ray flux by Fermi, HAWC etc
- Neutrino correlation: detection time, energy

What we need for existing observations

- CR acceleration/injection
- Radiation sites: jet, wind, disk corona, etc
- Theoretical/numerical modeling of interactions

Electromagnetic (EM) cascade emission from AT2019dsg

- Proton injection: spectral index = 2, E_{max} (free parameter), injection power ($L_p = \epsilon_p \dot{M}c^2 \propto L_{\text{OUV}}$)
- Radiation site: sub-relativistic wind energy dissipation radius 10^{15} cm $\leq R \leq 10^{17}$ cm (free parameter), B = 0.1 G (similar to AGNs)
- Target photons: IR, OUV and X-ray blackbody photons; target protons: wind
- IR photons from dust echos: re-emitting IR photons by dust torus

$\mathbf{AT2019dsg}^{a}$		
z = 0.051,	$M = 5 imes 10^6 M_{\odot}, t_{ m dyn} = 670 \; m d$	
72 eV, 3.4 eV, 0.16 eV		
217 TeV (IC191001A)		
154 d		
0.008 - 0.76		
M-IR	M-OUV	
$5.0 imes10^{16}$	$5.0 imes10^{14}$	
$5.0 imes 10^9$	1.0×10^{8}	
	z = 0.051, 72 2 M-IR 5.0×10^{16} 5.0×10^{9}	

Numerical Method: AM³ (Astrophysical Multi-Messenger Modeling)

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

$$\partial_t n_i = Q_{i,ext} + \sum_k Q_{int,k \to i} - \partial_E (\dot{E} \cdot n_i) - (\alpha_{i,esc} + \alpha_{i,adv}) n_i$$

Injection k Cooling Escape/Advection

Numerical Method: AM³ (Astrophysical Multi-Messenger Modeling)

Numerically solving the coupled PDEs for electron, proton, neutrons, neutrino and photon distributions.

$$\partial_t n_i = Q_{i,ext} + \sum_k Q_{int,k \to i} - \partial_E (\dot{E} \cdot n_i) - (\alpha_{i,esc} + \alpha_{i,adv}) n_i$$

Injection k Cooling Escape/Advection

M-IR: extended radiation zone close to dust torus

M-OUV: compact region close to OUV photons

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$: EM cascade light curves follows OUV light curve, no significant time delay

$$B = 0.1 \text{ G}, R = 5 \times 10^{14} \text{ cm}, E_{p,\text{max}} = 1 \times 10^8 \text{ GeV}, \epsilon_p = 0.2$$

Cascade emission peaks in LAT energy

range -> overshooting the γ -ray limits

Fermi γ -ray Constraints on $E_{p,\max}$ and B, and Neutrino Rates GFU neutrino rate is limited to be 0.01 - 0.1 per TDE (below red curves)

CRs are more confined with a stronger magnetic field, which enables a less compact region to be a promising neutrino emitter. (Easier to overshoot γ -ray up limits)

Summary

- EM cascade processes in TDE winds can produce detectable (hard) X-ray/γ-ray emissions. The model can be tested/constrained by future observations or current upper limits.
- Significant (~10-100 days) time delay is expected in the $p\gamma$ optically thin regime. Time-dependent analyses are needed (steady state may not be achieved with some source parameters).
- To be an efficient neutrino emitter, the accompanying cascade emission would overshoot the X-ray/ γ -ray constraints. Fermi upper limits implies ≤ 0.1 neutrinos per TDE! (jets? γ -ray obscured/ hidden models? Off-axis jet?) Ongoing work: (VHE) γ -ray observations, Lepto-Hadronic modeling

DESY. | Multi-Messenger modeling of TDEs | Chengchao Yuan, 2023/09/14

Public release of AM³

- C++ code with efficient hybrid solver combining analytical and numerical approaches.
- Source code with tutorials on various astrophysical objects,
 - ► AGN.
- Gamma-ray bursts.
- Tidal disruption events.
- Join with turn-key installations (Docker) on Linux and Mac OS systems.
- Soon to be published stay tuned!

AM³: An open-source tool for time-dependent lepto-hadronic modelling of astrophysical sources

Xavier Rodrigues - ESO

Annika Rudolph - Niels Bohr Institute

Marc Klinger - DESY

Chengchao Yuan - DESY

Gaëtan Fichet de Clairfontaine

10

Backup slides

Test lepton (e^{\pm} **) injections: a simple case**

Electron injection spectra

- $dN_e/d\gamma_e \propto \gamma_e^{-2}$
- $\gamma_{e,\min} = 300$, $\gamma_{e,\max} = 10^5$ (typically used for AGNs)
- Magnetic field 0.1 G
- Lepton loading factor L_e/L_p varies from 10^{-4} to 1 (magenta to blue dashed lines).

Cascade emission dominates if $L_e/L_p < 10^{-2}$

(Caveat: depends on *B* and γ_m)

CR acceleration with B = 0.1 G

 $t_{\rm acc}^{-1} = \eta_{\rm acc} c/R_L = \eta_{\rm acc} eBc/E_p$

Larger η_{acc} implies efficient CR acceleration; E_{max} depends on BB = 0.1 - 1 G is conservative for M-OUV cases ($R \sim 10^{15}$ cm, acceleration sites are close to hot corona, B can be much larger, e.g., $\sim kG$)

Proton injection

Four parameters: $E_{p,\min} \sim 1$ GeV, spectra index $p = 2, E_{p,\max}$ (free-param), normalization factor

Example: AT2019dsg: $M_{\rm SMBH} \simeq 5 \times 10^6 M_{\odot}$ (van Velzen et al. 2021)

We use four parameters to determine the proton injection (do not specify the accelerator)

- Normalization $\int dE_p E_p \dot{Q}(E_p) = L_p/(4\pi R^3/3)$
- $L_p(t) = \varepsilon_{\text{diss}} \dot{M}_{\star}(t) c^2$

Assumptions

- $\dot{M}_{\star}(t)/L_{OUV}(t) = \text{const}$
- Super-Eddington: $\dot{M}_{\star,\text{peak}}/\dot{M}_{\text{Edd}} = 10$ (Dai+ 2018)
- Proton diffusion in Bohm regime $D = R_L c$

AT2019fdr

CY & Winter, arXiv: 2306.15659

M-IR: extended radiation zone close to dust torus

DESY. | Multi-Messenger modeling of TDEs | Chengchao Yuan, 2023/09/14

EM cascade spectra of AT2019dsg: M-IR (dust echo)

 $p\gamma$ optically thin $t_{p\gamma}^{-1}/t_{fs}^{-1} < 1$: ($\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC$) + ($\gamma\gamma \rightarrow e^{\pm} \rightarrow SY/IC$)

AT2019dsg: M-IR (t_{ν})

Parameters: $\varepsilon_{diss} = 0.2$

 $B = 0.1 \text{ G}, R = 5 \times 10^{16} \text{ cm} = R_{IR}, E_{p,\text{max}} = 5 \times 10^9 \text{ GeV}$

Neutrino peak energy is significantly higher than the detected energy (green area) ->low N_{ν}

AT2019dsg Temporal signatures: M-IR

Dust echo scenario: $\varepsilon_{\text{diss}} = 0.2, B = 0.1 \text{ G}, R = 5 \times 10^{16} \text{ cm}, E_{p,\text{max}} = 5 \times 10^9 \text{ GeV}$

Fermi-LAT uplimit (0.1 - 800 GeV)

Interval	MJD Start	MJD Stop	UL
			$[{\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1}]$
G1	58577	58707	2.6×10^{-12}
G2	58707	58807	1.2×10^{-11}
G3	58577	58879	2.0×10^{-12}

Extended Data Fig. 7 | Gamma-ray energy flux upper-limits for AT2019dsg. The values are derived assuming a point-source with power-law index Γ =2.0 at the position of AT2019dsg, integrated over the analysis energy range 0.1-800 GeV.

Consistent with Fermi UL., but predicts a low neutrino number

~50 days time delay is compatible with $p\gamma$ interaction time $t_{p\gamma} \sim 10-100~{\rm d}$

EM cascade spectra of AT2019dsg: M-OUV

 $p\gamma$ optically thick $t_{p\gamma}^{-1}/t_{fs}^{-1} > 1$: ($\pi^{\pm} \rightarrow e^{\pm} \rightarrow SY/IC$) + ($\gamma\gamma \rightarrow e^{\pm} \rightarrow SY/IC$)

Open Questions

Distinguishing TDEs from impostors

- One unified picture for jetted and non-jetted
 TDEs (like AGNs), e.g., Dai + 2018?
- Months to years time delay of neutrino coincidence (AT2019dsg/fdr/aalc) common for TDEs?
- Two more dust-obscured TDEs coincident (Jiang+ 23) with neutrinos identified by similar spatial/temporal correlation?
- ^{\Box} Cosmological TDE rate? ν -coincident rate?
- Can TDEs be promising (VHE) γ-ray emitters? origin of UHECRs? Contribute to diffuse neutrino flux?

What we may need in the future

- a bold guess -

- Better angular resolution for neutrino tracks
- \Box GeV to VHE γ -ray data/constraints from Fermi, HAWC, VERITAS, etc. in time domain (late-time followup)
- MeV missions between hard X-ray and sub-GeV
- □ Time-dependent lepto-hadronic modeling leptonic process can be important for a stronger B or sufficient leptonic loading $L_e/L_p \gtrsim 10^{-2}$

DESY. | Multi-Messenger modeling of TDEs | Chengchao Yuan, 2023/09/14

AT2019dsg: M-IR (t_v) BB BH-SY/IC

 π^0 decay

 10^{11} 10^{13} 10^{15} 10^{17} 10^{19}

pp/py-SY/IC

yy-SY/IC

 10^{-8}

 10^{-9}

 10^{-10}

10-11

10-12

 10^{-13}

 10^{-1}

 10^{1}

 10^{3}

10⁵

 10^{7}

 10^{9}

E [eV]

s⁻¹]

5²dN/dE [GeV cm⁻²

all cas