

### Search for ultra-high energy photons and neutrinos in the multi-messenger context at the Pierre Auger Observatory

Viviana Scherini\* for the Pierre Auger Collaboration \* Università del Salento and INFN Lecce, Italy

# Main actors in the Universe plot

minnin

vitational waves

VeVit

→ Gravitational Waves: Multi wavelenght searches in combination with mergers

#### $\rightarrow$ Charged UHECR: magnetic fields deflection

#### $\rightarrow$ UHE photons:

limited horizon (local universe) or hints for new physics (SHDM, LIV)

→ **UHE neutrinos:** probing the most distant UHECR sources. Elusive particles need large exposure detectors

explore the intimate connection between UHECR and neutrals sources & propagation

Neutrinos

Nu

Cosmic rays

(protons, nuclei)

СМВ

p

www. 1als www.

Adapted from

GRAND

Vu

π

e+

CMB

n

 $\rightarrow$  talk by D. Boncioli

### **The Pierre Auger Observatory**



## **The Pierre Auger Observatory**





Excellent sensitivity also to neutral primaries in the EeV energy range

 $\Delta E/E \sim 8\%$ 

 $\Delta X_{max} \sim 15 \text{ g cm}^{-2}$ 

UHE photons and neutrinos at the Pierre Auger Observatory

Sept 13 2023 5

3000 r [m]

2500

2000

500

### **UHE Photon induced cascades**



Photon EAS distintive signature:

- $\rightarrow$  delayed shower developement
- $\rightarrow$  smaller muon content



UHE photons and neutrinos at the Pierre Auger Observatory

## **Photons: HYB and SD data selection**

#### Hybrid selection: Fisher response



- $\rightarrow$  Maximum of shower development: **X**<sub>max</sub>
- $\rightarrow$  Muon content of the shower (universality):  $F_{\mu}$

#### PoS(ICRC2021)373, paper in preparation

SD selection: Fisher response



deviation from benchmark obtained from data:  $\rightarrow$  based on LDF: L<sub>LDF</sub>  $\rightarrow$  based on rise-time:  $\Delta$ 

JCAP 05 (2023) 021

# **Photon flux upper limits**



Ap. J. 933 (2022)125 PoS (ICRC 2021) 373 JCAP 05 (2023) 021 PoS(ICRC2023)1488

→ measurements over ~4 decades

→ constraining cosmogenic predictions → disfavouring most top-down models → constraining mass and lifetime of dark matter particles → talk by O. Deligny

> Phys. Rev. Lett., 130(6):061001, 2023 Phys. Rev. D, 107(4):042002, 2023

→ point source limits constrain the continuation of measured TeV fluxes to EeV energies ApJL. 837: L25 (2017)

→ Auger Phase II started in 2022 additional information for better photon/hadron separation or... photon discovery!

**UHE photons and neutrinos at the Pierre Auger Observatory** 

# **UHE neutrinos: detection channels**

Earth-skimming (ES): upward going  $\tau$  neutrinos CC zenith angle 90° ÷ 95°

 $\rightarrow \tau$  can emerge from the Earth crust and decay close to the detector

D. Fargion, Astrophys. J. 570, 909 (2002) A. Letessier-Selvon, AIP Conf. Proc. 566, 157 (2001) Downward Going (DG): deeply interacting v CC & NC DGL 60°÷75° - DGH 75°÷90°

Sensitivity to ALL v flavours and ALL interaction channels



DGL 60°-75°

DGH 75°-90°

ES 90°-95°

# **UHE neutrinos: signature**



#### young shower i.e. with large electromagnetic component

 $\rightarrow$  inclined event with slow rising and broad signal

background composed by **muon-dominated hadronic showers** (EM component absorbed in the atmosphere)

discrimination relies on the **different SD signal shapes** between hadronic and neutrino events  $\rightarrow$  Area-over-Peak



# **UHE neutrinos: diffuse flux limits**



#### Pierre Auger Coll., JCAP 10 (2019) 022 EPJ Web Conf. 283 (2023) 04003

SD data from 1 January 2004 until 31 December 2021

#### **NO Candidates found**

Max sensitivity ~ 1 EeV

Integral UL normalization factor  $\mathbf{k} \sim \mathbf{3.5 \ x \ 10^{-9} \ [GeV \ cm^{-2} \ s^{-1} \ sr^{-1}]}$ 

pure-proton scenario disfavoured factor 3 exposure for probing mixed-composition scenarios

→ corresponding limits on point sources
complement IceCube and ANTARES
→ activity ongoing on transients

# **GW follow-up:** v searches

Routine in place to follow-up GW alerts

→ search for time-directional coincidence with 83 BBH events from LIGO/Virgo

 $\rightarrow$  sensitivity strongly depends on source location and event timing

 $\rightarrow$  number of neutrinos per source proportional to weighted overlap area integrated over time



### stacked analysis: PoS(ICRC2021)968, paper in prep. (2023)



No UHE-neutrino events found for 83 GW events upper limit on neutrino emission:  $Ev \sim 2 \times 10^{53}$  erg  $\rightarrow$  well below the radiated GW energy

# **GW follow-up:** γ searches



 $\mathcal{F}_{\gamma}^{\mathrm{UL}} = \int_{t_0}^{t_1} \int_{E_0}^{E_1} \mathrm{d}t \, \mathrm{d}E_{\gamma} \, E_{\gamma} \, \frac{d\Phi_{\gamma}^{\mathrm{GW}}}{dE_{\gamma}}.$ 

#### No coincident photon candidate identified

 $\rightarrow$  upper limits on spectral fluence ~ 7 MeV cm<sup>-2</sup> and ~35 MeV cm<sup>-2</sup>

 $\rightarrow$  constrain energy transferred into photons to < 20% for GW170817

UHE photons and neutrinos at the Pierre Auger Observatory

# Search for upward-going events with the FD



#### Quantify the sensitivity of the FD to upward-going showers

 $\rightarrow$  derive the FD exposure as a function of shower energy and height of first int.

 $\rightarrow$  MC estimate of the expected background



interferometri heolyce

UHE photons and neutrinos at the Pierre Auger Observatory

angles don't

reflect reality

# Search for upward-going events



Signal simulations: protons, log(E/eV) [16.5, 19] zenith [110°, 180°] - h [0, 9] km - spectrum  $E^{-1} \rightarrow 6.5 \times 10^7$  showers

Background simulations: protons He, N, Fe, log(E/eV) [17, 19], zenith[0°, 90°] - CRspectrum  $\rightarrow$  2.5 x 10<sup>8</sup> showers

Data: 10% burn sample defining selection criteria

testing upward and downward reconstructions: I = 0 downward favored,  $I \rightarrow 1$  upward favored

Full data sample 2004-2021: 1 candidate event found  $\rightarrow$  consistent with background (~0.3 evts ± 0.12)

# Search for upward-going events



# Joint work Auger-ANITA for calculating and comparing exposures



→ Auger limits are a factor ~100 (30) lower than ANITA fluxes, assuming  $E^{-1}$ ( $E^{-2}$ ) spectrum

# Search for upward-going events



# Joint work Auger-ANITA for calculating and comparing exposures



→ Auger limits are a factor ~100 (30) lower than ANITA fluxes, assuming  $E^{-1}$ ( $E^{-2}$ ) spectrum

## Outlook

The Pierre Auger Observatory participates in the ongoing multi-messenger international effort to combine data from different experiments in complementary energy ranges

The Pierre Auger Observatory, the largest detector for UHECR:

- $\rightarrow$  excellent sensitivity to photons and neutrinos in the EeV range
  - $\rightarrow$  stringent diffuse limits in the EeV range
  - → constraining exotic scenarios and testing cosmogenic flux predictions indirect hint on primary CR mass composition
- $\rightarrow$  coverage of a large fraction of the sky with targeted searches / transients
- → **follow-up searches** of LIGO/Virgo mergers

 $\leftarrow \text{ Fast LVC alert follow-up infrastructure in place} \\ \rightarrow \text{ GCN notices, streaming to AMON \& DWF}$ 

→ **upward-going searches** bounds to anomalous ANITA events & test BSM scenarios

 $\rightarrow$  The AugerPrime upgrade will improve on sensitivity and background rejection

### **Pierre Auger Observatory Open Data**

December 2022 rélease

### http://www.opendata.auger.org

The Pierre Auger Open Data is the public release of 10% of the Pierre Auger Observatory cosmic-ray data published in recent scientific papers and at International conferences, following the <u>Auger Collaboration Open Data Policy</u>. The release also includes 100% of weather and spaceweather data collected until 31 December 2020. This website hosts the datasets for download. Brief overviews of the <u>Pierre Auger Observatory</u> and of the <u>Auger Open Data</u> are set out below. An online event display to explore the released cosmic-ray events, and example analysis codes are provided. An outreach section dedicated to the general public is also available.

> catalog of the 100 highest energy events Astrophys. J. Suppl. S. 264 (2023) 50

> > 19



### backup slides

Viviana Scherini UniSalento & INFN LE UHE photons and neutrinos at the Pierre Auger Observatory

## **Targeted searches: photons**

Pierre Auger Coll., ApJL 837: L25 (2017)

Previous blind search limits

**12 target sets** Galactic sources (364 candidates sources) - stacked analysis

 $\rightarrow$  complement targeted neutron searches

NO evidence for *nearby* photon-emitting *steady* sources in the EeV range → might be transients



## **UHE neutrinos: data selection**

Pierre Auger Coll., JCAP 10 (2019) 022



# **UHE neutrinos: point sources sensitivity**



point sources transit through the field of view of each detection channel

→ sensitivity strongly depends on source location and event timing



 $\rightarrow$  good sensitivity in the EeV range in a broad range of declinations

 $\rightarrow$  complementary energy range:  $10^{17} \div 2 \cdot 10^{19}$  eV

# Follow-up searches: GW170817

#### ApJL 850 L35 2017



Viviana Scherini UniSalento & INFN LE

UHE photons and neutrinos at the Pierre Auger Observatory

Sept 13 2023 24

# Follow-up searches: TXS0506+056

Science 361, 146 (2018)



Viviana Scherini UniSalento & INFN LE

## **FD upward candidate event**



# Few pixels at the border of the FD camera

 $\theta \simeq 118^{\circ}$ 

#### Short profile

Core is behind the FD telescope