

tilepy: rapid tiling strategies in mid/small FoV observatories

M. Seglar-Arroyo, H. Ashkar, M. de Bony de Lavergne, F. Schüssler

Postdoctoral researcher

IFAE (Barcelona, Spain)

TeV Particle Astrophysics (TeVPA) 13 September, 2023

Science cases with large uncertainty in the localisation

- The localisation of various multi-messenger events presents very large uncertainties
- Range goes from from tens to thousands of squared degrees
- Examples are: Fermi-GBM gamma-ray bursts, LVK gravitational waves, cascade IceCube neutrinos

For mid/small-size telescope, this is a big challenge → Observation strategies

tilepy

- Set of python algorithms providing an observation scheduler, in a fairly complex scenario
- Originally developed for the followup of gravitational waves with very high energy Cherenkov telescopes (H.E.S.S. experiment)

Characteristics of the event

Characteristics of the telescope

- Visibility conditions function: darkness and moonlight observations and airmass considerations
- Probability computation functions
- Plotting functions to display results

Schedule for the night

Observation constraints

- The consideration of the observation constraints of the telescope is needed to schedule observations
- Main constraints come from the Sun and the Moon
 - Example: astronomical darkness, observations with moon (extra requirement to parametrise the separations skymap-moon, moon phase..)
- Effects of the atmosphere.
 - Examples: dependency of the energy threshold with the zenith angle of the showers, airmass for optical telescopes

Algorithm selection depending on the use case

- The selected algorithm will depend on:
 - Science case
 - Characteristics of the instrument
- Two main classes:
 - 2D algorithms use 2D probability distribution of the localisation
 - 3D algorithms use galaxy catalogs to associate a probability of a galaxy to be the host of the event

- Use of information from a galaxy catalog to obtained a weighted probability per galaxy of hosting the event.
 - Parameters to use: stellar mass, BNS merger rate, B-luminosity, K- luminosity...
- Depending on the telescope FoV: galaxy-targeted strategy or FoV-integrated probability

Probability Selection Algorithms

- Definition of probabilities:
 - 2D Algorithms: 2D localisation uncertainty region of GW sky map

Optimisation in the skymap treatment:

- Parallel use of a high-resolution and a low-resolution skymap
- Coverage optimisation by masking observed regions

Probability Selection Algorithms

- Definition of probabilities:
 - 2D Algorithms: 2D localisation uncertainty region of GW sky map

• 3D Algorithms: obtain 3D posterior 'GW x galaxy' probability distribution using GW skymap and galaxy catalogs (e.g. GLADE+)

Where can you find tilepy

- A good schedule strategy will make the difference.
- Tilepy is currently being used in H.E.S.S., LST and CTA-C
- Early release is available in Github: astro-transients/tilepy
- API: **tilepy.com**. Cloud-based computing of GW follow-up schedules using tilepy is provided by the Astro-COLIBRI platform.
- User interface via astro-colibri.science now available!

GW170817 with tilepy

Ashkar, H., SA, M., et al., (2020). JCAP2021, 2021.03: 045

The future: Generalising the methods

- Generalisation to N-small/mid FoV observatories
 - · Number of observatories: 2 observatories that follow-up the same event already included
 - Type of observatory

- Other science cases:
 - Fermi-GBM GRB follow-up observations:
 2D treatment of the uncertainty regions
 - IceCube neutrinos in the near future!

Carosi, A., SA, M. et al., ICRC2021, PoS838, 2021

Thanks for your attention!

Back up

Uncertainty regions: GW sky maps and galaxy catalogs

- 3D GW sky maps: posterior probability distribution
 - Gaussian likelihood and a uniform-in-volume prior

$$p(r|\mathbf{n}) = \frac{\hat{N}(\mathbf{n})}{\sqrt{2\pi}\hat{\sigma}(\mathbf{n})} \exp\left[-\frac{(r-\hat{\mu}(\mathbf{n}))^2}{2\hat{\sigma}(\mathbf{n})^2}\right] r^2$$

$$p(r|\mathbf{n}) = \frac{\hat{N}(\mathbf{n})}{\sqrt{2\pi}\hat{\sigma}(\mathbf{n})} \exp\left[-\frac{(r-\hat{\mu}(\mathbf{n}))^2}{2\hat{\sigma}(\mathbf{n})^2}\right] r^2 \qquad \qquad \frac{dP}{dV} = \rho_i \frac{N_{pix}}{4\pi} \frac{\hat{N}_i}{\sqrt{2\pi}\hat{\sigma}_i} \exp\left[-\frac{(r-\hat{\mu}_i)^2}{2\hat{\sigma}_i^2}\right]$$

 $\hat{\mu}_{i}$: mean

 $\hat{\sigma}_i$: scale

 \hat{N}_i : normalization

Singer, LP., et al., APJ Letters 829.1

(2016): L15 arXiv: 1603.07333

• Combine the posterior probability distribution with the local distribution of sources (r)

=> We have a probability per pixel $\rho(r,\phi)$ and we can obtain a probability of the galaxy to host the event $P^i_{GW\times GAL}$