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INTRODUCTION TO MACHINE LEARNING

Nowadays we have an 
abundance of structured and 

unstructured data

Structured data: categorized as 
quantitative data, highly 

organized and easily 
decipherable

Unstructured data: categorized 
as qualitative data, cannot be 
processed and analyzed via 
conventional data tools and 

methods

Machine Learning (ML) is a 
branch of Artificial intelligence 

(AI) and Computer Science 
which focuses on the use of data 
and algorithms to mimic the way 

that humans learn, gradually 
improving its performance.

Many applications in everyday 
life and in basic and applied 

science
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ALL YOU NEED IS…DATA!

https://www.thetechnologyheadlines.com/images/Most_Popular/2019/8/Machine-Learning-Applications-in-Real-World.jpg



GENERAL ALGORITHM STRUCTURE IN MACHINE LEARNING

Input 
data Model Output
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WHAT IS MACHINE 
LEARNING?
“Machine learning evolved as a subfield 
of artificial intelligence that involved the 
development of self-learning algorithms 
to gain knowledge from data in order to 
make predictions”

S. Raschka
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Credits: https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png

DIFFERENT TYPES OF MACHINE LEARNING 

https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png


SUPERVISED 
LEARNING

¡ Supervised refers to a set of 
samples where the desired output 
signals (labels) are already known. 

¡ GOAL: learning a model from
labeled training data that allows
us to make predictions about
unseen data.
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Credits: https://postindustria.com/how-to-know-which-machine-learning-algorithms-to-use-techniques-in-machine-learning/

https://postindustria.com/how-to-know-which-machine-learning-algorithms-to-use-techniques-in-machine-learning/


SUPERVISED 
LEARNING: 
CLASSIFICATION

¡ The goal of the classification is to 
predict the categorical class 
labels of new data based on past 
observations.  Classic examples 
are:

¡ EMAIL SPAM: binary classification

¡ HANDWRITTEN DIGIT 
RECOGNITION: multiple class 
classification
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Class A

Class B



SUPERVISED LEARNING: REGRESSION

The goal of the 
regression is the

prediction of
continuous
outcomes

SCORE

PREDICTIONS
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R E I N F O R C E M E N T  L E A R N I N G
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The goal of reinforcement learning is the 
development of a system which improves 

by interacting with the environment

PACMAN GAME



UNSUPERVISED 
LEARNING
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The goal of unsupervised 
learning is to explore the 

structure of data in order to 
extract meaningful information 

without the guidance of a 
known outcome variable or 

reward function

Clustering: organize 
information into meaningful 

subgroups (clusters) without 
having any prior knowledge of 

their group memberships

Dimensionality Reduction



SUPERVISED 
MACHINE LEARNING
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SUPERVISED LEARNING GOALS AND FEATURES

¡ learning a model from labeled training data allowing to 
make predictions about unseen data 

¡ supervised à samples where the desired output signals 
(labels) are already known

¡ discrete output (e-mail spam-filtering): classification

¡ continuous output values : regression
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ROADMAP FOR 
BUILDING 
MACHINE 
LEARNING 
SYSTEMS
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LABELED DATA 

IRIS DATASET IRIS MNIST
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BASIC TERMINOLOGY AND 
NOTATION

¡ The Iris dataset à 150 iris flowers from species:

¡ Setosa,

¡ Versicolor,

¡ Virginica. 

¡ 1 row of X= 1 flower (4-dim row vector)

¡ 1 column of X= 1 feature (150-dim column 
vector)

¡ y= class label vector (150-dim column vector)

y ∈ ℝ!"#×!
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𝒙𝒊 ∈ ℝ!×&

𝒙𝒋 ∈ ℝ!"#×!

X=

X∈ ℝ!"#×&



PREPROCESSING
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WHAT IS PREPROCESSING?
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test dataset kept until the very end for evaluation of the final model.

training dataset to train and optimize our machine learning model

Dataset  divided into training dataset and test dataset to determine if the ML algorithm can generalize well on 
new data:

Some of the selected features may be highly correlated and therefore redundant to a certain degree à, 
dimensionality reduction techniques ( less storage space required à ML algorithm can run much faster!!!)

Many machine learning algorithms require that selected features are on the same scale for optimal performance 
(normalization)

EXAMPLE:  in Iris dataset  raw data is a series of flower images from which we want to extract meaningful 
features ( color, the hue, the intensity of the flowers, the height, flower lengths and widths,…).

Raw data usually must be suitably shaped to be processed by a learning algorithmà preprocessing



SUPERVISED LEARNING ALGORITHMS 

¡ Perceptron

¡ ADALINE

¡ Logistic Regression

¡ Artificial neural network

¡ Support Vector Machine

¡ Decision Trees

¡ K-nearest neighbors
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¡ Perceptron

¡ ADALINE

¡ Logistic Regression

¡ Artificial neural network

¡ Support Vector Machine

¡ Decision Trees

¡ K-nearest neighbors
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SUPERVISED LEARNING ALGORITHMS 



A BRIEF 
HISTORY OF 
EARLY ML 
MODELS
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Biological Neuron

Mc Culloch-Pitts Neuron

Perceptron

Multi-layer perceptron



WHAT ARE NEURONS AND HOW 
DO THEY LOOK LIKE?

Neurons: interconnected nerve cells in the brain 
involved in the processing and transmitting of 
chemical and electrical signals

Dendrite: Receives signals from other 
neurons
Soma: Processes the information
Axon: Transmits the output of this neuron
Synapse: Point of connection to other 
neurons

21



MC CULLOCH-PITTS 
NEURON: 
THE SIMPLEST ARTIFICIAL 
NEURON

¡ 1943: Warren McCullock and Walter 
Pitts published the first model of a 
simplified brain cell, the so-
called McCullock-Pitts (MCP) neuron, 
in 1943 (W. S. McCulloch and W. 
Pitts. A Logical Calculus of the Ideas 
Immanent in Nervous Activity. The 
bulletin of mathematical biophysics, 
5(4):115–133, 1943).
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Mc Culloch and Pitts describe a nerve cell as a logic 
gate with binary outputs

multiple signals arrive at the dendrites and 
integrated into the cell body

if the total signal exceeds a certain threshold 𝜈 an 
output  is generated and pass on by the axon
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Non boolean 
inputs

What if we want 
to assign more
importance to 
some inputs?

How can we set 
a threshold?
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ROSENBLATT’S 
PERCEPTRON

¡ Few years later, Frank Rosenblatt published the 
first concept of the perceptron learning rule 
based on the MCP neuron model (F. 
Rosenblatt, The Perceptron, a Perceiving and 
Recognizing Automaton. Cornell Aeronautical 
Laboratory, 1957)

¡ Rosenblatt proposed an algorithm that 
automatically learns the optimal weight 
coefficients that are then multiplied with the 
input features in order to make the decision of 
whether a neuron fires or not.

¡ In the context of supervised learning and 
classification, such an algorithm could then be 
used to predict if a sample belonged to one class 
or the other.
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ROSENBLATT’S PERCEPTRON

¡ Let’s think about a binary classification task where we refer to our two 
classes as 1 (positive class) and -1 (negative class) for simplicity.

¡ We can define an activation function 𝝓(𝒛) as a linear combination of input 
values x (feature vector) and corresponding weights

¡ z is the net input

¡ If the activation function 𝜙 of z is greater than a defined threshold 𝜃 we 
predict 1, otherwise we predict -1: step function

¡ We bring 𝜃 on the left side: z − 𝜃 ≥ 0

¡ We define a weight-zero as               (bias) and           , rewriting z in a more 
compact form: 

¡ The net input z is squashed in a binary output -1 or 1 by 𝜙(𝑧) and it can be used to 
discriminate between two linearly separable classes (right subfigure)

Heaviside step function

LINEAR DECISION BOUNDARY
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ROSENBLATT’S 
PERCEPTRON 
RULES

The idea behind the MCP neuron and Rosenblatt's thresholded : 

¡ using a reductionist approach to mimic how a single works: it either fires or it doesn’t. 

Rosenblatt's initial perceptron rule is fairly simple and can be summarized by the following steps:

1. Initialize the weights to 0 or small random numbers.

2. For each training sample xi perform the following steps:

1. Compute the output value (predicted) !𝒚𝒊

2. Update the weights

3. The update can be calculate using this formula where 𝜼 is the learning 
rate which a constant value ranges from 0.0 to 1.0, 𝒚𝒊 is the true class label of the i-th training 
sample and !𝒚𝒊 is the value of the i-th training sample predicted by the algorithm

!!! It is important to note that all weights in the weight vector are updated simultaneously, which 
means that we do not recompute the !𝒚𝒊 until all the weights are updated!!!
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ROSENBLATT’S 
PERCEPTRON 
EXAMPLE
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ROSENBLATT’S PERCEPTRON:
FINAL SCHEME

MCP Model

The learning algorithm passes
over the training dataset until all
the input vectors are classified
correctly (until it achieves
convergence)
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!!! IMPORTANT !!!

¡ The convergence of the perceptron is only guaranteed if the two classes are 
linearly separable and the learning rate is sufficiently small. 

¡ If the two classes can't be separated by a linear decision boundary, we can set 
a maximum number of passes over the training dataset (epochs) and/or a 
threshold for the number of tolerated misclassifications—the perceptron 
would never stop updating the weights otherwise!!!!

30DEEP NEURAL NETWORK OR KERNEL FUNCTION



ADAPTIVE 
LINEAR NEURONS AND 
THE CONVERGENCE OF 
LEARNING



ADAPTIVE LINEAR NEURON (ADALINE)

Adaline was published only a few years after Frank Rosenblatt's perceptron algorithm, 
by Bernard Widrow and his doctoral student Tedd Hoff

It can be considered as an improvement on the latter (B. Widrow et al. 
Adaptive "Adaline" neuron using chemical "memistors". Number Technical Report 1553-
2. Stanford Electron. Labs. Stanford, CA, October 1960. 

The Adaline algorithm illustrates the key concept of defining and minimizing cost 
functions, which will lay the groundwork for understanding more advanced machine 
learning algorithms for classification (e.g. logistic regression)
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ADALINE
¡ The key difference between the Adaline rule (a.k.a.

the Widrow-Hoff rule) and Rosenblatt's perceptron
is that the weights are updated based on a linear
activation function rather than a unit step function
like in the perceptron.

¡ In Adaline, this linear activation function φ(z) is
simply the identity function of the net input so
that

¡ While the linear activation function is used for
learning the weights, a quantizer, which is similar
to the unit step function that we have seen before,
can then be used to predict the class labels

¡ If we compare the preceding figure to the
illustration of the perceptron algorithm that we saw
earlier, the difference is that we use the
continuous valued output from the linear
activation function to compute the model error
and update the weights, rather than the binary
class labels, which is more “powerful” since it tells us
by “how much” we are right or wrong

Rosenblatt’s Perceptron
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MINIMIZING COST FUNCTIONS WITH GRADIENT DESCENT

¡ In supervised machine learning algorithms we define an objective function that must be optimized during the 
learning process. 

¡ This objective function is often a cost function that we want to minimize. 

¡ In the case of Adaline, we can define the cost function J to learn the weights as the Sum of Squared

Errors (SSE) between the calculated outcomes and the true class labels

¡ The term     is to make it easier to derive the gradient

¡ The main advantage of this continuous linear activation function —in contrast to the unit step function— is 
that the cost function becomes differentiable. 

¡ Another property of this cost function is that it is convex; thus, we can use a simple, yet powerful, optimization 
algorithm called gradient descent to find the weights that minimize our cost function to classify the samples 
in the Iris dataset.
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ADALINE’S COST FUNCTION

Principles behind gradient descent:

§ climbing down a hill until a 
local or global cost minimum is 
reached. 

§ In each iteration we take a step 
away from the gradient where 
the step size is determined by 
the value of the learning rate 
as well as the slope of the 
gradient
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ADALINE VS PERCEPTRON

¡ Although the Adaline learning rule looks identical to the perceptron rule                               is a 
real number and not an integer class label

¡ The weight update is calculated based on all samples in the training set (instead of updating 
the weights incrementally after each sample), which is why this approach is also referred to as 
"batch" gradient descent.
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GRADIENT DESCENT: 
LEARNING RATE
• 𝜂 is the learning rate constant that determines the size of the steps

Small 𝜂 High 𝜂 

With a high learning rate we can cover more
ground each step (so it learns faster), but we

risk overshooting the lowest point since the
slope of the hill is constantly changing

With a very low learning rate, we can
move in the direction of the negative

gradient since we are recalculating it frequently,
but calculating the gradient is time-consuming,

so it will take us a very long time to get to the
bottom. 37



SCALING AND 
LOGISTIC 
REGRESSION



SCALING DATA

¡ Feature data can have different scales and ranges.
¡ This can be a problem for gradient descent:

¡ The weights updated is proportional to feature value, so, 
with features being on different scales

¡ certain weights may update faster than others
¡ It is difficult to select the most suitable learning rate value

¡ If we choose the value based on the input value having the smallest range, small learning 
rate it takes ages for the large range to converge.

¡ if we choose high value for learning rate, the gradient descent might not converge for small 
ranges.

¡ Feature scaling is a method used to normalize the range of features 
of data.
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!!! If we have features on a similar scale we help the gradient descent to converge faster to the minimum !!! 



SCALING DATA: 
NORMALIZATION

Normalization is a scaling technique in which values are shifted and 
rescaled so that they end up ranging between 0 and 1.

¡ The general formula for a min-max of [0, 1] is given as the top-left 
equation

¡ Another form of normalization is called mean-normalization:

¡ it calculates and subtracts the mean for every feature. The formula is the
equation in the top-right
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SCALING DATA: 
FEATURE 
STANDARDIZATION

¡ Feature standardization makes the values of each feature

in the data have zero-mean (when subtracting the mean in the numerator) 

and unit-variance.

¡ The general method of calculation is to determine the

distribution mean and standard deviation for each feature.

Next, we subtract the mean from each feature. Then we

divide the values (mean is already subtracted) of each

feature by its standard deviation
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LOGISTIC REGRESSION

42



LOGISTIC REGRESSION

¡ To explain the idea behind logistic regression as probabilistic model for binary 
classification we introduce the odds in favor of a particular event.

¡ The logit function is the logarithm of the odds:

¡ Logit function takes input values in range 0 and 1 and transforms them to values over the 
entire real-number range, which we can use to express a linear relationship between 
feature values and the log-odds
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LOGISTIC 
REGRESSION: 
SIGMOID 
FUNCTION

¡ We are actually interested in predicting the probability that a certain 
example belongs to a particular class, which is the inverse form of the 
logit function.

¡ It is also called the logistic sigmoid function, which is sometimes 
simply abbreviated to sigmoid function due to its characteristic S-
shapeà a new NOT LINEAR activation function with an intrinsic 
probability meaning!
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LOGISTIC REGRESSION: HOW TO MAKE PREDICTION - 
DECISION BOUNDARY

¡ The predicted probability can then simply be
converted into a binary outcome via a 
quantizer (unit step function)
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LOGISTIC REGRESSION: SCHEME
¡ In Adaline, we used the identity function 

𝜙(𝑧) = 𝑧 as activation function. 

¡ In logistic regression, this activation function simply becomes the sigmoid 
function

¡ There are many applications where we are not only interested in the 
predicted class labels, but where the estimation of the class-membership 
probability is particularly useful

¡ Using LR we should maximize the likelihood function L

¡ LR uses gradient descent after converting the log-likelihood function in 
the cost function J Adaline VS LR

Logistic Regression

46COST FUNCTIONLOG-LIKELIHOOD



GOING DEEPER INTO THE LR COST FUNCTION…
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ARTIFICIAL 
NEURAL 
NETWORKS



CONTENTS

Historical Recap
Machine Learning 

classification 
problem

Multi-layer 
perceptron and 

NN

Activation 
functions

Batch size and 
minimization 
algorithms

Loss functions Validation 
procedure

Hyperparameters 
in a NN Overfitting Evaluation metrics
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HISTORICAL RECAP

Artificial neurons represent the 
building blocks of the multi-layer 

ANNs

The basic concept behind 
artificial neural based on 

hypotheses and models of how 
the human brain works to solve 

complex problem tasks.

Early studies of NNs in 1940s 
with Warren McCulloch and 

Walter Pitt 

In 1950s the first implementation 
of the McCulloch-Pitt 

neuron model and then 
Rosenblatt's perceptron in the 

1950s

After 1950s many researchers 
and machine learning 

practitioners lost interest in NNs 
since no one had a good 

solution for training a neural 
network with multiple layers.

In 1986 the interest in NNs was 
rekindled when D.E. Rumelhart, 
G.E. Hinton, and R.J. Williams 

were involved in the 
(re)discovery and popularization 

of 
the backpropagation algorithm t

o train neural networks more 
efficiently (Rumelhart, David E.; 
Hinton, Geoffrey E.; Williams, 
Ronald J. (1986). Learning 
Representations by Back-

propagating Errors. Nature 323 
(6088): 533–536).
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ML 
CLASSIFICATION 
PROBLEM

A Neural Network is a very powerful classification algorithm

The simplest version of a Neural Network is the Perceptron 

Perceptron can be considered the building block of a NN 

GOAL: the discrimination between 2 classes or among more classes through a 
training done on a specific dataset.

The algorithm, during the train, adapts 
several number of parameters in order 
to discriminate the defined classes

It is quite similar to perceptron algorithm, but 
we have a more complicated parameter 
structure
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CLASSIFICATION PROBLEM 

FIRST STEP: selection of our dataset in 
which  there are a set of features that 
describes what we want to discriminate 
(for example the discrimination of 
different types or irises)

SECOND STEP: defining classes 
and targets (in the previous 
example: Iris-setosa, Iris-versicolor 
and Iris-virginica) 
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CLASSIFICATION PROBLEM

¡ We often start from the X (feature array) and Y (label array) of information. 

¡ For our algorithm we need to transform the Y information in a numeric information in order to insert that in the loss 

function.

¡ The simplest way to do that is to order our classes from 0 to N where N is the number of classes but we must avoid 

to use it, because it adds an intrinsic order between our classes: the algorithm could prefer the class with the 

highest number due to the definition of the loss function.

¡ The most used method is to create dummy variables FOCUS ON: 
A dummy variable is a variable that 
takes values of 0 and 1, where the 
values indicate the presence or 
absence of something.
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SINGLE-
LAYER 

NEURAL 
NETWORK 

RECAP

¡ The simplest algorithm able to discriminate 
between two classes (binary classificator) is 
the perceptron.

¡ The perceptron is the fundamental building-
block of a Neural Network but…we will need a 
lot of them!

¡ In a single perceptron we have:
¡ m+1 weights (where m is the number of input variables)

¡ an activation function

¡ an output that is a linear function of inputs and weights

¡ In every epoch (pass over the training set), we updated the weight vector :

ADALINE

CLASSIFICATION PROBLEM
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LINEAR OR NOT LINEAR…THIS IS THE QUESTION!

¡ Linear approach in the perceptron implies the weaker assumption of monotonicity: any increase in our feature must 

always  cause an increase in our model’s output (if the corresponding weight is positive), or always causes a decrease in 

our model’s output (if the corresponding weight is negative).

¡ LIMIT: the probability related to something is not always proportional to features

¡ Use Case: we want to predict probability of death based on body temperature. For individuals with a body temperature above 37°C , 

higher temperatures indicate greater risk. However, for individuals with body temperatures below 37°C, higher temperatures indicate 

lower risk! In this case, we might resolve the problem with some clever pre-processing. Namely, we might use the distance from 37°C 

as our feature.

¡ In order to overcome these limitations of linear models and handling a more general class of functions by incorporating 

one or more hidden layers between input and output. 

¡ We can introduce non linearity also in the activation function:

¡ the output became a complicated function of the input variables à losing the linearity of our model.

55



MULTI-LAYER 
PERCEPTRON

¡ First example of NN: Multilayer perceptron

¡ a net of fully connected perceptron

¡ In the schematical view on the right every circle is 
a perceptron with a fixed number of inputs and 
outputs

¡ In the example (on the right) we have an input 
layer, only one hidden layer and an output layer
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MULTI-LAYER 
PERCEPTRON
¡ For every line (which represents a connection from a neuron 

belonging to a layer to a neuron belonging to the next one) we 
have an associated weight.

¡ In this case we just have:

¡ 2 input variables

¡ an hidden layer with size 2 (i.e. with 2 neurons)

¡ and 2 outputs,

¡ #𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟 / #𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 +
#𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟 = 6 𝑤𝑒𝑖𝑔𝑡ℎ𝑠
(between input layer and hidden layer)

¡ #𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟 / #ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠 𝑠𝑖𝑧𝑒 + 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟 = 6 𝑤𝑒𝑖𝑔𝑡ℎ𝑠
(between hidden layer and output layer)

TOTAL=12 WEIGHTS
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INTRODUCING 
THE MULTI-LAYER NEURAL NETWORK ARCHITECTURE

¡ Problem: how can we connect multiple single neurons to a multi-layer 
feedforward neural network?
¡ This special type of network is also called a multi-layer 

perceptron (MLP). 

¡ The following figure explains the concept of an MLP consisting of 
three layers: one input layer, one hidden layer, and one output 
layer. 

¡ The units in the hidden layer are fully connected to the input 
layer, and the output layer is fully connected to the hidden layer.

¡ If such a network has more than one hidden layer, we also call it 
a deep artificial neural network.

3 LAYERS

FOCUS ON TERMINOLOGY

Hidden layer: it is a layer between the input layer and the output layer. It takes in
a set of weighted inputs and produces output through an activation function. This 
layer is named hidden because it does not constitute the input or the output layer.

Fully connected: A fully connected layer refers to a neural network in which each 
neuron applies a linear transformation to the input vector through a weights 
matrix. As a result, all possible connections layer-to-layer are present, meaning 
every input of the input vector influences every output of the output vector.

Dense layer: a NN layer is called a dense layer to indicate that it’s fully 
connected. 

Feed Forward Networks: a neural network where connections between the 
nodes do not form a cycle. In a feed-forward network information always moves 
one direction, from input to output, and it never goes backward. Feedforward NN 
can be viewed as mathematical models of a function f: RNàRM

MULTIPLE LAYERS
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FOCUS NN TOPOLOGIES

¡ A Neural Networks (NN) can be classified according to the type of neuron
interconnections and the flow of information:

¡ Feed Forward Networks: a neural network where connections between the nodes do 
not form a cycle. In a feed-forward network information always moves one direction, 
from input to output, and it never goes backward. Feedforward NN can be viewed as 
mathematical models of a function f: RNàRM

¡ Recurrent Neural Network: allows connections between nodes in the same layer, among 
each other or with previous layers. Unlike feedforward neural networks, RNNs can use 
their internal state (memory) to process sequential input data.

¡ We could add an arbitrary number of hidden layers to the MLP to create deeper 
network architectures. Practically, we can think of the number of layers and 
units in a neural network as additional hyperparameters that we want to 
optimize for a given problem task 

¡ The error gradients calculated later via backpropagation would become 
increasingly small as more layers are added to a network.

¡ This vanishing gradient problem makes the model learning more challenging. 
Therefore, special algorithms have been developed to pretrain such deep neural 
network structures, which is called deep learning.
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INTRODUCING 
THE MULTI-LAYER NEURAL NETWORK ARCHITECTURE

¡ we denote the ith activation unit in the lth layer as ai
(l) 

¡ the activation units a0
(1)  e a0

(2) are the bias units set equal to 1

¡ The activation of the units in the input layer is just its input plus the bias unit:

¡ Each unit in layer l is connected to all units in layer l+1 via a weight coefficient.

¡ For example, the connection between the kth unit in layer l to the jth unit in layer l+1 would 
be written as wl

j,k

¡ The superscript i in xm
(i) stands for th ith sample (not layer)

¡ While one unit in the output layer would suffice for a binary classification task, we saw a 
more general form of a neural network to perform multi-class classification via a 
generalization of the One-vs-All (OvA) techniqueà one-hot representation of categorical 
variables.

¡ For example, we would encode the three class labels in the familiar Iris dataset 
(0=Setosa, 1=Versicolor, 2=Virginica) as follows:
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ACTIVATION FUNCTION

¡ The activation function provides to the activation or 
not of a node

¡ The functions are in general differentiable operators 
in order to transform the inputs to outputs

¡ Most of them provides to add non-linearity to the 
model

¡ The activation function σ has as input the weighted 
sum of the input variables x, added with the bias b

ACTIVATION FUNCTION
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RECTIFIED LINEAR 
UNIT (RELU)

¡One the most popular non-linear activation function is the REctified

Linear Unit (ReLU).

¡ It provides a non-linear transformation and returns the max value 

between the input x (the argument) and 0.

RECTIFIED LINEAR UNIT (RELU)
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¡ The ReLU function is also differentiable in R-{0} 
and its derivative is the Heaviside function.

¡ In case the input is equal to zero, it is used the 
left-side derivative.

RECTIFIED LINEAR UNIT (RELU)
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SCALED EXPONENTIAL LINEAR UNIT (SELU)

¡ Another choice is the 
Scaled Exponential 

Linear Unit (SELU).

¡ The functions depends 

on two parameters and 
the equation is the 

following:
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¡ The function is not differentiable in zero.

¡ Also here is convention to use the left-side 

value of its derivative.

SCALED EXPONENTIAL LINEAR UNIT (SELU)
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SIGMOID FUNCTION

¡ Sigmoid function:

¡ Derivative Sigmoid function:
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¡ Tanh function:

¡ Derivative Tanh function:

TANH FUNCTION
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MULTILAYER PERCEPTRON

¡ Example: in this case there are two outputs.

¡ The hidden layer output h is function of the input x:

¡ The output o is a different function of its input, i.e. h:
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MULTILAYER 
PERCEPTRON

¡ How can we interpret the two values?

¡ In classification problem the goal is to understand how the input x is 

related to a certain class

¡ The output o could be seen as the vector of probabilities of belonging to 

each class

¡ However this is not straightforward
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>

SOFTMAX REGRESSION

¡ To solve this issueà we define Softmax activation function which is defined as follows:

¡ So that (for construction):

=
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PARAMETRIZATION COST

¡ The layers we are handling are fully-connected 

¡ Adding new neurons (perceptrons) to a network layer or adding a new layer makes our model more complex and capable 

of facing a wide range of more challenging problemsà we are facing PARAMETRIZATION COST

¡ The complexity of the model, however, faces directly with the increase of computational time, which could become 

extremely high.
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PARAMETRIZATION COST

¡ Suppose to have a hidden layer with d input and q outputs.

𝑞 = #𝑛𝑒𝑢𝑟𝑜𝑛𝑠

¡ The parametrization cost is ∝

¡ It is possible to reduce the parametrization cost introducing an hyperparameter n so that: 
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VECTORIZATION FOR MINIBATCHES à BATCH SIZE N

¡ Input

¡ Weights

¡ Bias

¡ Outputs

73

How many samples are feeding our network
AT THE SAME TIME!

TELLS US

SAVING COMPUTATIONAL TIME



LOSS FUNCTION

¡ To measure the quality of our predicted probabilities we need a loss function

¡ We will suppose that the entire dataset (or the batch we are considering) has n samples 

{X,Y}

¡ The i-th{X,Y} entry is made by the feature vector x-ith and the one-hot label vector y-ith

¡ The predicted class can be compared with the real class by checking the probability 

associated to the actual class according to the model.

¡ According to the maximum likelihood estimation, we want to maximize P(Y|X), or minimize 

the negative log-likelihood.
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CROSS-ENTROPY LOSS FUNCTION

¡The negative log-likelihood is equal to:

¡Where l(y,ypred) is the loss function, also called cross-entropy, defined as:
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CROSS-ENTROPY LOSS FUNCTION

¡ The cross-entropy loss function is a common choice in classification problems

¡ Moreover it is generalizable when the vector of label y doesn't contain only binary entries like 
(1,0,0), but is a generic probability vector

¡ This is the case where we observe not just a single outcome but an entire distribution over 
outcomes
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CROSS-ENTROPY LOSS FUNCTION AND SOFTMAX

¡ The softmax and the corresponding loss function are very common but…what is the corresponding loss function?

¡ Let’s compute it:

REMINDER:

CROSS-ENTROPY

SOFTMAX
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CROSS-ENTROPY LOSS FUNCTION AND SOFTMAX

¡To understand better let's have a look at the derivative w.r.t. any 

output o i-th:

The derivative is the difference between the probability assigned by our model, 

as expressed by the softmax operation, and the y true vector.
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EXAMPLES OF OTHER LOSS FUNCTIONS FOR ANNS

¡ Mean Squared Error(MSE)/ Quadratic Loss/ L2:

¡ Mean Absolute Error (MAE)/ L1 Loss: 

¡ Mean Bias Error (MBE):
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VALIDATION

¡ Task: we want to optimize our model, without touching 

the test dataset and avoiding the risk of overfitting

¡ We are going to use our test dataset only after the 

training is finished  in order to assess the very best 

model

¡ The best practice to address this problem is to split our 

dataset in three (instead of two) parts, incorporating a 

validation dataset (or validation set) in addition to the 

training and test datasets.
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TRAINING 
DESCRIPTION

The main idea of the model training is to iterate over the network different 
times (number of epochs).

In each epoch k stochastic minibatches of n (batchsize) entries (items) 
are selected from the dataset 

We then compute the derivative (gradient) of the average loss on the 
minibatch regarding the model parameters. 

Finally, we multiply the gradient by a predetermined positive value η (the 
learning rate) and subtract the resulting term from the current parameter 
values.

The epoch ends after k iterations, i.e. all over the k batches.
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MINIBATCH STOCHASTIC 
GRADIENT DESCENT

¡ We iteratively sample 
random minibatches from 
the data, updating the 
parameters in the direction 
of the negative gradient.

¡ Backward propagation of 
the training, parameters 
updating as follows:
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HYPERPARAMETERS

An hyperparameter is an 
internal parameter of the 
model that must be fixed 

before training, such 
parameter influences the fit 
procedure in a way not well 

known a priori.

We cannot know which value 
is perfect for our model and 

we need to try different 
reasonably values to figure out 

which one is the best.

No Free Lunch theorem: no 
single classifier works best 

across all possible scenarios
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¡ With a DNN we can change a lot of parameters, most of which are:

¡ The loss function

¡ The activation function of every layer

¡ The learning rate

¡ The number of epochs

¡ The number of hidden layers and the number of cells in them

¡ …many others

¡ The hyperparameters can change from an algorithm to another, here we mentioned only the main parameters of a DNN.

HYPERPARAMETERS
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LEARNING RATE

¡ Adjusting the learning rate 𝜂 is often just as important 
as the actual algorithm

¡ If 𝜂 is too large the optimization does not converge 
à we may simply end up bouncing around the 
minimum and thus not reach optimality

¡ if 𝜂 is too small it takes too long to train or we end 
up with a suboptimal result

¡ What we can do: we can decide to start from a 
reasonable value for the learning rate and then use the 
method implemented in Keras: "ReduceLROnPlateau". 

¡ It reduces the value of 𝜂 when a monitor (set by us) 
has stopped improvingà we can obtain a large 𝜂
value at the beginning of the training with a 
progressive reduction when we are approaching to 
the optimized model.
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NUMBER OF EPOCHS

¡ Epoch: a complete step of the training

¡ it includes the evaluation and the consecutive updating of the weights

¡ Number of epochs is a delicate choice:

¡ A large number of epochs can induce our model to an overfitting problem

¡ a too small number of epochs can lead to an under fitting problem

¡ To avoid a wrong choice we can use the 'EarlyStopping', also implemented by Keras:

¡ it allows to stop the training when a monitor (set by us and tipically the loss function) has 
stopped improving.
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HIDDEN 
LAYERS

¡ The number of hidden layers add complexity to 
our model.

¡ Adding hidden layers makes our algorithm more 
performing, but at the same time we lead it to an 
overfitting problem

¡ Another crucial factor is the number of cells in 
the hidden layer, also in this case a lot of cells 
increase the complexity of the model and 
increase the risk to an overfitting problem

¡ This choice has to be done carefully, it is the 
most difficult one and only comparing the 
evaluation metrics between different approaches 
we can know which is the best one.
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TRAINING-TEST 
DATA SPLITTING
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OVERFITTING AND 
UNDERFITTING

¡ Overfitting is a common problem in machine learning:

¡ where a model performs well on training data but does not 
generalize well to unseen data (test data).

¡ If a model suffers from overfitting, we also say that the 
model has a high variance, which can be caused by having too 
many parameters à too complex 

¡ Similarly, our model can also suffer from underfitting (high bias), 
which means that our model is not complex enough to capture 
the pattern in the training data

¡ à low performance on unseen data.
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ILLUSTRATING 
OVER/UNDERFIT

TING

The problem of overfitting and underfitting can be best 
illustrated by using a more complex, nonlinear decision 
boundary as shown in the figure above
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OVERFITTING PROBLEM

¡ The more complex the model is, the higher is the risk 

of overfitting.

¡ Here a clear example of overfittig, the train loss keeps 

going down while the validation loss get worse. It is 

always important to split the training in train and 

validation set and to have a clear picture of the train 

history.

¡ In order to avoid overfitting and make the training 

stable we have different approach
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FACING 
OVERFITTING 
PROBLEM – 1

¡ Introduce a callback function that stops the 

training if the validation loss get worse and 

restore the best parameters (Early Stop function). 

Reduce overtraining and time needed for the 

training.

Stop and restore best parameters
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FACING 
OVERFITTING 
PROBLEM – 2

¡ "Weight Decay": introduce penalty terms in the loss function if a weight 

becomes too large.
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FACING 
OVERFITTING 
PROBLEM –  3

Dropout: it refers to the practice of disregarding certain nodes in a layer at 

random during training. A dropout is a regularization approach that prevents 

overfitting by ensuring that no units are co-dependent with one another.
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EVALUATION 
METRICS

¡ The idea of building machine learning 
models works on a constructive feedback 
principle:

¡ building a model, getting a feedback 
from metrics, making improvements 
and continuing until you achieve the 
desired accuracy

¡ An important aspect of evaluation metrics is 
their capability to discriminate among model 
results

¡ The real goal is creating and selecting a 
model which gives high accuracy on sample 
data:

¡ It is crucial to check the accuracy of 
your model prior to computing 
predicted values.
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METRICS§ A metric is a function that is used to evaluate the
performance of your model.

§ Metric functions are similar to loss functions, except
that the results from evaluating a metric are not used
during the training of the model.

•TP (true positive): the event is POSITIVE, the prediction is POSITIVE 

•FP (false positive): the event is NEGATIVE, but the prediction is POSITIVE 
•TN (true negative): the event is NEGATIVE, the prediction is NEGATIVE 

•FN (false negative): the event is POSITIVE, the prediction is NEGATIVE 

IN H.E.P.:
• POSITIVE: SIGNAL
• NEGATIVE: BACKGROUND

NOTE: Precision == purity; recall==sensitivity == TPR == signal efficiency; FPR = FP/(FP+TN)

DIFFERENT TYPES OF METRICS 
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CONFUSION MATRIX

¡ The confusion matrix helps us 

visualizing whether the model is 
"confused" in discriminating between 

two or more classes.

¡ In the figure we have an example of 

binary model and the corresponding 
confusion matrix.

¡ The 4 elements of the matrix 
represent the 4 metrics that count the 

number of correct and incorrect 
predictions the model made.
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ACCURACY

The most famous metrics is the accuracy defined as the ratio between 
the number of correct predictions to the total number of predictions

Accuracy values range between 0 and 1. Obviously an accuracy values 
near to 1 means that our model fits well the datasets

It is important to stress that a good accuracy value on the training 
dataset does not imply a good discrimination on the test dataset
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PRECISION/
PURITY

¡ The precision is calculated as the ratio between the number of Positive 
samples correctly classified to the total number of samples classified as 
Positive (either correctly or incorrectly). The precision is intuitively the ability of 
the classifier not to label as positive a sample that is negative 

¡ When the model makes many incorrect Positive classifications, or few correct 
Positive classifications, this increases the denominator and makes the 
precision small. On the other hand, the precision is high when:

¡ The model makes many correct Positive classifications (maximize True Positive).

¡ The model makes fewer incorrect Positive classifications (minimize False Positive).
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RECALL/
SENSITIVITY/
TPR/
SIGNAL 
EFFICIENCY

¡ The recall is calculated as the ratio between the number of Positive samples correctly classified 
as Positive to the total number of Positive samples. The recall is intuitively the ability of the 
classifier to find all the positive samples.

¡ The recall cares only about how the positive samples are classified. This is independent of how 
the negative samples are classified, e.g. for the precision.

¡ The decision of whether to use precision or recall depends on the type of problem to be solved:

¡ If the goal is to detect all the positive samples (without caring whether negative samples 
would be misclassified as positive) then we can use recall;

¡ if the problem is sensitive to classifying a sample as Positive in general, i.e. including 
Negative samples that were falsely classified as Positive we can use precision.
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F1-SCORE

¡ F1-Score is the harmonic mean of precision and recall values for a 

classification problem.

¡ It takes the harmonic mean because punishes extreme values more.

¡ For example, if we have a model with Precision = 0 and Recall =1, it is clear 

that this result comes from a dumb classifier which just ignores the input and 

just predicts one of the classes as output. In this example we will have a F1 

score equal to 0

104



AUC-ROC

¡ A Receiver Operating Characteristic curve, or ROC 
curve, is a plot that illustrates the true positive rate 
against the false positive rate defined as follows:

¡ The metric connected to the ROC curve is the area 
under the curve AUC. 

¡ An AUC near to 1 indicates a ROC curve near to the 
best result, an AUC near to 0 indicates a random 
classifier.
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CONVOLUTIONAL 
NEURAL 
NETWORKS



OVERVIEW

Digital image 
classification 
problem

1

An introduction 
to convolution 
in 1 and 2 
dimensions

2

An overview on 
the different 
layers of a 
CNN

3

A brief 
explanation of 
the Data 
Augmentation

4



DIGITAL IMAGES

¡ Convolutional Neural Networks are a powerful family of DNNs that are specifically designed for the 
Images Processing Task (but not only!)

WHAT ARE IMAGES DIGITALLY SPEAKING?

§ From Wikipedia: "A digital image is an image composed of picture elements, also known as 
pixels, each with finite, discrete quantities of numeric representation for its intensity."

• Images can be seen as matrices, 
where every cell represents a pixel.

• To every cell (= to every pixel) a 
number is associated

• In a greyscale image each pixel 
value is the grey intensity
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DIGITAL IMAGES
§ Colored images are usually coded with the RGB 

color model: each pixel is associated to three 
numbers, corresponding to the Red, Green and 
Blue intensity

§ The image is obtained as the sum of the three 
components
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DIGITAL IMAGES
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§ An RGB image is therefore represented by a 
matrix (weight)x(height)x3

§ A greyscale image is (weight)x(height)x1

=

RED GREEN BLUE



HOW CAN  
WE 
CLASSIFY 
IMAGES?
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IMAGES CLASSIFICATION WITH DNN 

§ As we already know, a classification 
problem can be easily addressed from 
a NN:

§ The more the problem is complex 
and not linear the better DNNs 
perform with respect to single layer 
networks.

§ Images can be given in input to DNN 
by flattening pixels to form a 1D array.

§ DNNs are also invariant to input 
features order, therefore they could 
also be shuffled before being fed 
the network

with pixels 
content
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IMAGES CLASSIFICATION WITH DNN 

Example:

§ the input is a 64x64 grayscale 
image. Such an image can be 
represented by 64x64x1 = 4096 
values

§ the input layer of a DNN processing 
such an image has 4096 nodes

§ if the (fully connected) inner layer has 
500 nodes, we will have 4096x500 = 
2048000 weights between the 
input and the hidden layer

§ If the image were an RGB image the 
input layer would have 64x64x3 = 
12288 nodes

§ For complex problems, we usually 
need multiple hidden layers...

A DNN CANNOT SCALE TO HANDLE 
LARGE IMAGES. WE NEED A MORE 
SCALABLE ARCHITECTURE!!!
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CONVOLUTIONAL NEURAL NETWORKS

¡ To flat an image into a 1D array is not the best way to model images

§ any spatial relationship in the data is ignored

§ A Convolutional Neural Network (CNN) maintains the spatial structure of the data, and is better 
suited for finding spatial relationships in the image data
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§ The idea behind: to 
use filters that 
automatically learns 
the most discriminants 
features in an image, 
such as edges, filled 
patterns, specific 
geometric forms and 
so on



CONVOLUTIONAL NEURAL NETWORKS
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BASIC CONCEPTS:

§ Sparse connectivity: A single element in the feature map is connected to only 
a small patch of pixels.

§ Parameter-sharing: the same weights are used for different patches of the 
input image

from Spatial Invariance Principle: whatever method is used to recognize objects it 
should not be concerned with the precise location of the object in the image



THE CONVOLUTIONAL LAYER

§ Let's start from the Convolutional Layer:

§ It is the core building block of a Convolutional Network that does most of the computational heavy lifting
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INTUITION WITHOUT BRAIN STUFF

§ The CONV layer’s parameters consist of a set of 
learnable filters.

§ Every filter is small spatially (along width and 
height) and extends through the full depth of 
the input volume.

§ The output is a single layer with a certain spatial 
size (width x height x1)



THE CONVOLUTIONAL LAYER

§ Let's start from the Convolutional Layer:

§ It is the core building block of a Convolutional Network that does most of the computational heavy lifting
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INTUITION WITHOUT BRAIN STUFF

Example:
§ a typical filter on a first layer of a CNN has 

size 5x5x3

§ Let's suppose we have a 28x28 pixel RGB 
image

§ Convolution is the process of placing the filter 
5x5x3 on the top left corner of the image, 
multiplying filter values by the pixel values 
and adding the results, moving the filter to 
the right one pixel at a time and repeating 
this process



THE CONVOLUTIONAL LAYER

§ Now let's explain the convolution in mathematical details
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THE MATHEMATICAL VIEW

Discrete convolution in one dimension

§ A discrete convolution between two vectors with finite size, x and w, is mathematically 
defined as:

§ w is typically called filter or kernel
§ The index i runs through each element of the output vector y
§ In ML applications we always deal with finite feature vectors
§ In real word x and w have finite dimensions, let’s say n and m respectively, where 𝑚 ≤ 𝑛.



THE CONVOLUTIONAL LAYER
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§ The convolution becomes:

§ x and w are indexed in different directions in this summation.
§ Computing the sum with one index going in the reverse direction is equivalent

to computing the sum with both indices in the forward direction after flipping
one of those vectors

§ This operation is repeated like in a sliding window approach to get all the
output elements.

THE MATHEMATICAL VIEW



THE CONVOLUTIONAL LAYER
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Example:

§ x = [3 2 1 7 1 2 5 4], w = [½, ¾, 1, ¼ ]

THE MATHEMATICAL VIEW



PADDING LAYER
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§ The result of this convolution is a tensor with a smaller shape than the input one
§ To preserve/increase input shape we can use the so called padding procedure:

§ It consists in padding zero pixels to input tensor
§ Usually, a same padding procedure is used, meaning that the output vector

has the same size as the input one.
§ Valid padding: we are not adding anything

P = kernel size -1 P: input size = output size P = 0



STRIDE PARAMETER

122

§ One concept introduced in the previous example is the number of cells the filter is 
moved when shifted across the vector x (to pass from a y index to another)

§ It is called stride

MOVING ALONG INPUTS

Example:

§ N=7, 
filter = 3

Stride = 1

Stride = 2

Output = 5

Output = 3

The bigger is the stride 
the smaller is the output dimension!



THE OUTPUT SIZE
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OUTPUT SIZE

𝑜 =
𝑛 + 2𝑝 −𝑚

𝑠
+ 1

§ o = output dimension

§ n = input dimension

§ p = padding

§ m = kernel size

§ s = stride

§ The size of the vector obtained by a convolution can be calculated as follows:
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THE MATHEMATICAL VIEW

Convolution in 2D

§ The concepts we have now discussed are easily extendible to 2D case:

§ 𝑿𝑛1×𝑛2 and 𝑾𝑚1×𝑚2 are now two matrices -> Y is a 2D matrix as well

Example:
§ input matrix 𝑿3×3

§ kernel matrix 𝑾3×3

§ p=(1, 1)
§ stride s=(2, 2)
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THE MATHEMATICAL VIEW

Convolution in 2D

§ We can rotate the filter to perform the sum on indices running in the same directions



CONVOLUTION IN 2D
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§ How does a convolutional layer work on a RGB image?

1. For each channel color there is a different filter

2. The three outputs are added together

3. The output of a convolutional layer with a multi-layer input is a single layer



CONVOLUTION IN 2D
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STRIDES AND PADDING IN 2D

128

§ padding (1,1)

§ strides 1

§ The input shape 
is 
preserved (padd
ing 'same')

§ Zero-padding and strides concepts are the same 
of 1D case

§ The output size of a 2D filter is still calculable 
with the formula seen before, applied on weight 
and height separately

Input dimension Zero-padding Kernel dimension

stride

§ padding (1,1)
§ strides (2,2)
§ The input shape is 

lowered 

Applied along x and y axes
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§ Maximum Pooling (or Max Pooling): 
Calculate the maximum value for each 
patch of the feature map.

§ Average Pooling: Calculate the average 
value for each patch on the feature map.

§ Tuning zero-padding and strides it is possible to change (usually reduce) the 
output dimension w.r.t. input dimension

§ This task can be also performed with a "Pooling" layer

TWO KINDS OF POOLING:

THE POOLING LAYER
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Different Pooling Layers
• Which pooling do I have to choose????

• It depends!

White à 1.0
Black à 0

In this case min pooling let us preserving better the original information!



Different 
Pooling 
Layers
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In this case max pooling let us preserving better the original information!



THE MAX POOLING LAYER
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MAIN ASPECTS:

§ Pooling (max-pooling) introduces a local invariance. This means that small changes in a local 
neighbourhood do not change the result of max-pooling

§ Let’s take X1 and X2 which are

similar but  not the same matrix (i.e. 2

Images which are similar 

but not the same!!)

§ Pooling decreases the size of features, which results in higher computational efficiency. Furthermore, 
reducing the number of features may reduce the degree of overfitting as well (and complexity!).

§ Traditionally, pooling is assumed to be non-overlapping (pooling size = stride)à so that we have an 
output in which pixels are independent from one another)

ROBUSTNESS W.R.T. NOISE



PUTTING EVERYTHING TOGETHER IN A CNN
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§ A convolutional neural network is a sequence of the following layers ordered in different 
ways:
§ Convolutional
§ Pooling
§ Dense layer
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li FILTERS WEIGHTS ARE LEARNT 

FROM DATA DURING TRAINING

THE NETWORK LEARNS WHICH 
ARE THE MOST DISCRIMINANT 
PATTERNS

A CNN PERFORMS THE 
CLASSIFICATION BY READING 
THESE EXTRACTED FEATURES

A DNN READS ONLY PIXELS 
VALUES



PUTTING EVERYTHING TOGETHER IN A CNN
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§ A convolutional layer is tipically composed of:

Conv operation

N filters 

§ In a convolution layer, usually several filters are 
stacked together

§ Each filter learns some different information 
from the same image



PUTTING EVERYTHING TOGETHER IN A CNN
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§ A convolutional layer is tipically composed of:

+

N filters + activation function



PUTTING EVERYTHING TOGETHER IN A CNN
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§ A convolutional layer is tipically composed of:

+

N filters + activation function + pooling layer

+



PUTTING EVERYTHING TOGETHER IN A CNN
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§ The sequence convolutional + pooling is not the only possible choice:

§ Modern networks do not use pooling but adjust the output size by tuning the padding and strides of the 
convolutional layers



DENSE LAYERS FOR CLASSIFICATION
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§ Now we must flatten the final output and feed it to a regular Neural Network for 
classification purposes

§ Adding a Fully-Connected layer is a way of learning non-linear combinations of the high-level 
features (from filters)

1. The image is flattened into a column vector
2. then fed to a fully-connected neural network



ACTIVATIONS AND LOSS FUNCTIONS FOR 
CLASSIFICATION
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§ Now what our model misses is the final probabilistic interpretation of the output Z 
to perform classification:

§ An activation function should be applied to the output of the last fully-connected 
layer:

§ 'Sigmoid' for binary classification

§ 'Softmax' for multi-classification

Recall: Sigmoid and Softmax are both probabilities for an event to belong to a given class, 
therefore they are used only in the outer layer. Other activation functions, like ReLU and tanh are 
mainly used in the intermediate (hidden) layers to add non-linearities to our model



CNN REGULARIZATION: DROPOUT
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§ Choosing the size of a network has always been a challenging problem

§ Small networks, or networks with a relatively small number of parameters, are 
likely to underfit, resulting in poor performance

§ very large networks may result in overfitting, where the network will do extremely 
well on the training dataset while achieving a poor performance on the test 
dataset

§ One way to address this problem is to build a network with a relatively large 
capacity to do well on the training dataset, then to prevent overfitting we can 
apply one or multiple regularization schemes to achieve a good performance on 
new data

Too few parameters! Too many parameters!



CNN REGULARIZATION: DROPOUT

142Si
lv

ia
 A

ur
ic

ch
io

 &
 F

ra
nc

es
co

 C
ir

o
tt

o
, U

ni
ve

rs
ità

 d
eg

li 
st

ud
i d

i N
ap

o
li 

"F
ed

er
ic

o
 II

" 
-I

N
FN

 N
ap

o
li

§ Dropout has emerged as a popular technique for regularizing: during the training phase 
a fraction of the hidden units is randomly dropped at every iteration with a certain 
probability (rate)

§ During prediction, all neurons will contribute to computing the pre-activations of the 
next layer
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ELECTRON-ION COLLIDER

The EIC will be a particle accelerator that collides 
electrons with protons and nuclei to produce 
snapshots of those particles’ internal structure.

The electron beam will reveal the arrangement of 
the quarks and gluons that make up the protons 
and neutrons of nuclei. 

The EIC will allow us to study the strong nuclear 
force (that holds quarks together) carried by the 
gluons, and the role of gluons in the matter.

EIC will be operating in 2030's: by then AI may also 
leverage on technologies that are 
currently Computing Frontiers.

What we learn from the EIC could power the 
technologies of tomorrow

144
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§ The Electron-Ion Collider (EIC)
at Brookhaven Lab will reuse the 

infrastructure from the Relativistic 
Heavy Ion Collider (RHIC) and 
build on discoveries at RHIC and  the 
Continuous Electron Beam 
Accelerator Facility (CEBAF) at 
Thomas Jefferson National 
Accelerator Facility (Jefferson Lab)

§ EIC will have new features that 
greatly expand our ability to 
explore the building blocks of 
visible matter.

EIC VS RHIC

RHIC: Two ion accelerator/storage rings (inside RHIC tunnel). EIC: One ion accelerator/storage ring plus one electron 
accelerator ring and one electron storage ring.



AI4EIC: BACKGROUND

¡ Artificial Intelligence contributes to all phases of the Electron Ion 
Collider starting from the Design and R&D.

¡ The A.I. goals for EIC: optimization of this complex problem 
characterized by multiple parameters and objectives like detector 
performance and costs. 

¡ AI provides :

¡ insight on hidden correlations among the design parameters

¡ identify optimal tradeoff solutions 

¡ The AI-supported Optimization of the Accelerator and Detector 
Design needs reliable Streaming Readout 
and Simulations followed by Reconstruction and Analysis:
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AI4EIC OUTREACH 
¡ AI in our society will be the economic driver of the next decade when EIC will be operating

¡ The EIC detector can be one for the first large-scale detector to be designed with the assistance of AI in the following areas (in 
progress):

• Accelerator and Detector Design

• Simulations

• Analysis and Reconstruction

• Accelerator and Detector Control 

• Streaming Readout

• Computing Frontiers

• Theory and Phenomenology
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FOCUS ON ENCODING CLASS LABELS
¡ Many machine learning libraries require that class labels are encoded as integer values. 

¡ It’s good practice to provide class labels as integer arrays to avoid technical glitches. 

¡ To encode the class labels we can map ordinal features 

¡ Thus, we can simply enumerate the class labels starting from 0:

¡ Next we can use the mapping dictionary to transform the class labels into integers:

¡ We can reverse the key-value pairs in the mapping dictionary as follows to map the converted class labels back to the original string representation:

¡ Alternatively, there is a convenient LabelEncoder class directly implemented in scikit-learn to achieve the same:

>>> import numpy as np
>>> class_mapping = {label:idx for idx,label in
...                  enumerate(np.unique(df['classlabel']))}
>>> class_mapping
{'class1': 0, 'class2': 1}

>>> df['classlabel'] = df['classlabel'].map(class_mapping)
>>> df

color size  price  classlabel
0  green     1   10.1           0
1    red     2   13.5           1
2   blue     3   15.3           0

>>> inv_class_mapping = {v: k for k, v in 
class_mapping.items()}
>>> df['classlabel'] = df['classlabel'].map(inv_class_mapping)
>>> df

color size  price classlabel
0  green     1   10.1     class1
1    red     2   13.5     class2
2   blue     3   15.3     class1

>>> from sklearn.preprocessing import LabelEncoder
>>> class_le = LabelEncoder()
>>> y = class_le.fit_transform(df['classlabel'].values)
>>> y
array([0, 1, 0])
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ONE-HOT ENCODING
¡ Instead of using a simple dictionary-mapping approach to convert the ordinal size feature into integers. Since scikit-learn's estimators treat class labels 

without any order, we used the convenient LabelEncoder class to encode the string labels into integers. 

¡ It may appear that we could use a similar approach to transform the nominal color column of our dataset, as follows:

¡ After executing the preceding code, the first column of the NumPy array X now holds the new color values, which are encoded as follows:

¡ If we stop at this point and feed the array to our classifier, we will make one of the most common mistakes in dealing with categorical data:

¡ Although the color values don't come in any particular order, a learning algorithm will now assume that green is larger than blue, and red is larger 
than green. Although this assumption is incorrect, the algorithm could still produce useful results. 

¡ WORKAROUND: one-hot encoding

¡ the idea behind this approach is to create a new dummy feature for each unique value in the nominal feature column

¡ We convert the color feature into three new features: blue, green, and red. Binary values can then be used to indicate the particular color of a sample; for example, a blue 
sample can be encoded as blue=1, green=0, red=0. 

¡ To perform this transformation, we can use the OneHotEncoder that is implemented 

in the scikit-learn.preprocessing module:

>>> X = df[['color', 'size', 'price']].values
>>> color_le = LabelEncoder()
>>> X[:, 0] = color_le.fit_transform(X[:, 0])
>>> X
array([[1, 1, 10.1],

[2, 2, 13.5],
[0, 3, 15.3]], dtype=object)

>>> from sklearn.preprocessing import OneHotEncoder
>>> ohe = OneHotEncoder(categorical_features=[0])
>>> ohe.fit_transform(X).toarray()
array([[  0. ,   1. ,   0. ,   1. ,  10.1],

[  0. ,   0. ,   1. ,   2. ,  13.5],
[  1. ,   0. ,   0. ,   3. ,  15.3]]) 151



¡ An even more convenient way to create those dummy features via one-hot encoding is to use the get_dummies method 
implemented in pandas. Applied on a DataFrame, the get_dummies method will only convert string columns and leave all other 
columns unchanged:

ONE-HOT ENCODING

>>> pd.get_dummies(df[['price', 'color', 'size']])
price  size  color_blue color_green color_red

0   10.1     1           0            1          0
1   13.5     2           0            0          1
2   15.3     3           1            0          0
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ACTIVATIONS AND LOSS FUNCTIONS FOR CLASSIFICATION WITH CNNS
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§ Focusing on classification problems, depending on the type of problem and the type of output
(logits versus probabilities), we should choose the appropriate loss function to train our
model

§ With 'from_logits=True' logits are provided as inputs to the loss function (not the activation output),
the inverse of the sigmoid function:

§ It is preferred due to numerical stability reasons



AN ENSEMBLE VIEW
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§ Since the first convolutional filters learn high level features in the image in input and 
the input size is larger than in inner layers, the number of filters is relatively small in 
order to not insert too many weights

§ A good practice is to increment this number in the subsequent convolutional steps

§ Dropout can be inserted not only between dense layers but also between a Conv 
layer and its input



DATA AUGMENTATION FOR CNNS
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§ When the size of training dataset is small, it is a good practice to increase the fit 
performances applying Data Augmentation:
§ It consists in replicating existent images by applying small changes to it (rotation, 

translation, resizing, flip..)
§ In this way not only the number of training samples increases but each picture is fed to the 

network with different prospections

§ EXAMPLE: 
§ a poorly trained neural network would think that these three tennis balls shown below 

are distinct images, instead they are not

THE NETWORK GENERALIZES BETTER!!!



DATA AUGMENTATION
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§ In the real-world scenario, we may have a dataset of images taken in a limited set of 
conditions, but our target application may exist in a variety of conditions, such as 
different orientation, location, scale, brightness etc.

§ A convolutional neural network that can robustly classify objects even if it is placed in 
different orientations is said to have the property called invariance to translation, 
viewpoint, size or illumination

§ We account for these situations by training our neural network with additional synthetically 
modified data



DATA AUGMENTATION
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dataset

Example:
§ Let's suppose you have to train a CNN for learning to distinguish between two car 

brands:
Brand A (Ford) Brand B (Chevrolet)

§ In the dataset all Brand A cars are facing left and all Brand B cars are facing right
§ Now, you feed this dataset to your “state-of-the-art” neural network, and you hope 

to get impressive results once it’s trained



§ From training you get a 95% accuracy on your dataset

§ If you feed a Brand A car to the CNN ….

§ .... your neural network output is a Brand B car!

DATA AUGMENTATION

158Si
lv

ia
 A

ur
ic

ch
io

 &
 F

ra
nc

es
co

 C
ir

o
tt

o
, U

ni
ve

rs
ità

 d
eg

li 
st

ud
i d

i N
ap

o
li 

"F
ed

er
ic

o
 II

" 
-I

N
FN

 N
ap

o
li

Why did this happen?
§ A CNN finds the most obvious features that 

distinguishes one class from another, here all cars of 
Brand A were facing left and all cars of Brand B were 
facing right

Solution



GRID SEARCH

¡ Grid-search is used to find the 
optimal hyperparameters of a model which results 
in the most ‘accurate’ predictions.

¡ https://towardsdatascience.com/grid-search-for-
model-tuning-3319b259367e

¡ https://keras.io/api/keras_tuner/tuners/grid/
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