

Experimental results on TMDs, Facilities and Experiments (I)

Silvia Dalla Torre

Followed by Measurements and Results (II) (Andrea Bressan)

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB
- Take-away messages

TMD, how to measure ?

TMD distributions (Transverse-Momentum–Dependent distributions)

- How do we access TMDs?
 - Via SIDIS (Semi-Inclusive Deep Inelastic Scattering)
 - In the experimental data TMDs are convoluted with fragmentation functions •
 - Different levels of complexity in extracting TMD information according to the kinematic regions ٠

Focus on current fragmentation region, where a factorization picture with fragmentation functions is ٠ appropriate for TMD studies: present status of the experimental data largely related to this region: large Q² (Q² >> Λ^{2}_{OCD}), at fixed x_{bi}, with large enough z_h, and with small P_{hT}.

Needed for

domain

the experimental approaches:

Access to the high Q2

Measuring TMDs, what is needed?

A famous scheme : the 8 leading-twist (twist-two) quark TMDs

Single-spin asymmetries, on transversally polarized target: the transversity (h_1), the Sivers function (f_{1T}^{\perp}), the pretzelosity function (h_{1T}^{\perp})

Double spin asymmetries (polarized lepton beams !), on longitudinally/transversally polarized target: helicity (g_1) and worm-gear TMDs (g_{1T}^{\perp} , h_{1}^{\perp} , h_{1L}^{\perp})

The access to all TMDs, apart f_1 , is via asymmetry measurements, where the cross-section asymmetries are convoluted with instrumental parameters (like polarization dilution) resulting in extremely small measured asymmetries and with potential false asymmetries from instrumental effects.

One more parameter to explore: flavor-dependence of TMDs by identifying the hadrons in the final state

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
 - With focus on spin-effect measurements:

facilities and beams

- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB

Take-away messages

Corigliano-Rossano, 18-22 June 2023

5

Facilities and Experiments, from DIS to SIDIS DTS @ SLAC

Where everything started in the 60's @ Stanford Linear Accelerator Center(SLAC)

20 GeV e-beam:

The first observation of partons

VOLUME 23, NUMBER 16

PHYSICAL REVIEW LETTERS 20 October 1969

HIGH-ENERGY INELASTIC e-p SCATTERING AT 6° AND 10° *

E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, G. Miller, L. W. Mo, and R. E. Taylor Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

M. Breidenbach, J. I. Friedman, G. C. Hartmann, † and H. W. Kendall Department of Physics and Laboratory for Nuclear Science.[‡] Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 19 August 1969)

At SLAC in the 90's

- increasing energy (up to 50 GeV)
- adding polarization:
 - beam (polarization reversed at each burst)
 - polarized gaseous (³He) and solid state targets (NH₃, ND₃)
- experiments
 - E142 (29.2 GeV, ³He)
 - E143 (29.2 GeV, H, D)
 - E154 (48.3 GeV, ³He)

Pros:

- The high intensity of the e-beams for precision measurements
- The very frequent reversal of the beam polarization helps in keeping the systematic effects under control
- **Beam monochromaticity** ($\Delta E \sim 0.1-1$ %) and **fine optics** (spot size: 1-2 mm)

Cons:

- The beam energy and the fix angle small acceptance spectrometers does not allow to explore the small-x domain
- No possible evolution toward SIDIS because of small-acceptance spectrometers

Facilities and Experiments, from DIS to SIDISpolarized Beam at stated two-mile electron linear accelerator

- pulsed beam of electrons with a maximum intensity of 2.6×10^9 electrons per pulse
- polarization of 85% after acceleration !
- a pulse length of 1.6 μ s
- a repetition rate of 180 Hz
- polarization reversal time ≤ 1 s
- 2 polarimeters:
 - at 70 keV by <u>Mott scattering</u>: left-right scattering asymmetry In scattering of transversally pol.ed e off heavy nuclei
 - at GeV energies

by Møllerer scattering: e-e double spin asymmetry, polarized e target in a thin ferromagnetic foil magnetized to saturation and inclined to provide a large longitudinal polarization

Atoms in the $M_i = +\frac{1}{2}$ ground state are selected by deflection in the strong inhomogeneous field of a sextupole magnet

Facilities and Experiments , from DIS to Sible Signature A great tool: the SPS μ-beam Mean Parameters for COMPASS Measured Measured

violating nature of the weak decay $\pi \rightarrow \mu \nu$

Beam polarization from simulation studies and then (SMC experiment) with two polarimeter measurements

From the energy spectrum of positrons in mu decay $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_{\mu}$. From the asymmetry in the elastic scattering off polarized electrons

Facilities and Experiments , from DIS to Sing high-energy

- Toroidal spectrometer
- Multiple targets to increase the luminosity

μ-beams and open spectrometers

Pros:

- High energy (up to 250 GeV) \rightarrow access to high Q² and small x
- Open spectrometer (EMC, NMC, SMC) \rightarrow also supporting small x investigation and making possible a natural evolution to SIDIS \rightarrow COMPASS

Cons:

Beam intensity (before COMPASS), muon halo, beam chromaticity and optics

9

INFN

Facilities and Experiments, from Dys.to SIDIS (1990) 533 In line using an extracted p-beam from the TEVATRON fix target operation

NIM A291 (1990) 533

 μ -beam line using an extracted p-beam from

- Secondary µ-beam at Tevatron fix-target, ٠ E up to 500 GeV
- **Open spectrometer** ۲

To remark:

First time that an extended PID system • (ToF, 2 threshold Č, a gaseous RICH) in included in a DIS setup \leftrightarrow exclusive vector meson production as part of the physics program

1st European Sum

Facilities and Experiments, from DIS to SILA collider for Dis studies

- - HERA I (till 2000)
 - HERA II (from 2001) with increased luminosity (x 4.7)
- The first and, so far, unique e-p collider .

- · Collisions of 27.5 GeV polarized electrons(positrons) on 920 GeV protons
- Bunch crossing every 96 ns
- Luminosity 10³¹ cm⁻² sec⁻¹

The **Sokolov–Ternov effect** is the self-polarization of relativistic electrons or positrons moving at high energy in a magnetic field. The self-polarization occurs through the emission of spin-flip synchrotron radiation.

The magnetic field creates an asymmetry in the spin-flip rates: e+ (e-) align parallel (antiparallel) to H

Facilities and Experiments, from DIS to SIDIS e-beam polarimeters at

1994 - Lpol: 1000 γ x BX measuring the energy asymmetry in crystal calorimeter (COMPTON scattering). Single γ for calibration.

NIM A 479 (2002) 334

1996 - Tpol: single photon mode measuring **space asymmetry** with sampling calorimeter.

NIM A329 (1993) 79

2006 - Fabry-Perot Lpol: increase the statistical precision thanks to the addition of the cavity JINST 5 (2010) P06005

$$\frac{d\sigma}{dE_{\gamma}} = \frac{d\sigma_0}{dE_{\gamma}} \left[1 - P_{\lambda} P_e A_z(E_{\gamma}) \right]$$

Make use of backward Compton scattering off a laser beam

- Laser helicity is flipped regularly
- Polarization is proportional to the difference between cross section data with opposite laser helicity

Measure electron polarization to few % with the Compton polarimeter

Facilities and Experiments, from DIS to SIDIS Intense e-beam

CEBAF (Continuous Electron Beam Accelerator Facility) at Jefferson Lab

- The 6 GeV accelerator
 - 0.6-6 GeV electrons
 - 3 experimental halls (Hall-A, -B and C)
 - Almost continuous beams, ~ 100% duty cycle •
 - Years: 1995 2012
- The 12 GeV electrons
 - Up to 12 GeV
 - Upgrade of the 3 experimental Halls
 - Addition of a 4th Hall (Hall-D) dedicated to photoproduction experiments
 - Years: from 2014, from 2017 with upgraded Halls

Facilities and Experiments , from DIS to SIDIS DIS CEBAF Polarized e-beam

Polarized e-beams at CEBAF

A series of 3 sources

٠

- GaAs treated to have a negative electron affinity (NEA) as e-source
 - photoemission using monochromatic circularly polarized laser light
 - Making photocathode life-time longer by improving vacuum and photocathode preparation

	First photoinjector	Second photoinjector	Third photoinjector
Date	Feb. 1995–Jan. 1998	Feb. 1998–June 1999	July 1999 to present
Charge lifetime (C)	<10	~ 100	200
Charge density lifetime (C/cm^2)	$\sim 10^{4}$	$\sim 10^{5}$	$2 imes 10^5$
Polarization	~35%	70%-75%	>80%

Managing beam polarization in the accelerator

- At CEBAF, net spin precession only in the horizontal plane (any spin orientation possible): •
 - no net vertical bend between the injector and the experimental hall beam lines
 - no energy difference between pairs of equal and opposite vertical bends
- negligible loss of polarization between the injector and the experimental halls ٠

ACCELERATORS AND BEAMS 10, 023501 (2007)

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
 - With focus on spin-effect measurements:

polarized targets

- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB

Take-away messages

Corigliano-Rossano, 18-22 June 2023

Facilities and Experiments, from DIS to Spice target:

A magnet surrounding the storage cell provides

- a holding field defining the polarization axis
- Longitudinal polarized ³He up to 1996
- Longitudinal polarization up to 2000 (H, D)
- Transverse polarization from 2002 (H)

S.Dalla Torre

INFN

SMC polarized target, NIMA 437 (1999) 23 Method : dynamic nuclear polarization (DNP) • T < 1 K</td> • using a homogeneous magnetic field to polarize paramagnetic spins to a

- high degree
- a microwave field to transfer the polarization to the nuclear spins

1 m

Relevant parameters of the SMC polarized target

- 2 cells with opposite polarization, 65 cm each, 30 cm gap, 5 cm Ø
- Superconducting solenoid, 2.5 T, microwave sources at 70 GHz
- Coil superposed on the solenoid coil to produce a dipole transversal field of 0.5 T for
 - fast polarization reversal
 - transverse polarization (~50 mK to reduce relation time at 0.5 T)
- **Dilution refrigerator**
- nuclear magnetic resonance (NMR) system with 10 coils was designed for polarization measurement in the two target cells

21

INFN

Facilities and Experiments, from DIS to SISolid state Polarized targets

Transverse polarization (frozen spin mode)

Relaxation times function of magnetic field intensity and temperature; at 50 mK and 0.5 T :

- Butanol: 1000 h
- D-butanol: 600 h
- Ammonia : 500 h

S.Dalla Torre

22

Polarized targets for TMD studies with fix target experiments

SOLID STATE PTs

- μ-beams impose LONG (> 1 m) solidstate PT to preserve luminosity
 - polarization reversal requiring ~ 1h every ~1w → 2(3) cells with opposite pol.
 - Important dilution factors
 - No vertex detector
- e-beams can operate with SHORT (some cm) solid state PTs
- Frozen-spin operation
 - Target transverse polarization
 - Non in situ polarization: less demanding services at the experimental target

	Where ?	experiment	lepton beam	polarized nucleon	also transversal polarization	target type	target material	reference	notes
		EMC	μ	р			NH ₃		
	CERN	SMC		p Y	solid state	C ₄ H ₉ OH			
							NIIVI A 437 (1999) 25		
		COMPASS		p			NH ₃	NIM A 1025 (2022) 166069	
				n	Y		⁶ LiD	NIM A 498 (2003) 101	
	SLAC -	E143		р	V	colid state	NH_3		
				n	Y Y	solid state	ND_3	NIIVI A 350 (1995) 9	
		E142		р		gaseous	³ He	NIM A 356 (1995) 148	
		E154		р				NIM a 402 (1998) 247	
	DESY	HERMES		p		gaseous	³ He	NIM A 419 (1998) 16	
					v		Н	NIM A 540 (2005) 68,	internal jet target
				n			D	NIM A 536 (2005) 244	
	- Jlab -	Hall C	CLAS, 512	р		gaseous	³ He		
		Hall A		р		solid state ND ₃	NH ₃		"UVa polarized target",
Jlab				n	Y		ND ₃	NIM A 427 (1999) 440	also used in Hall C,
									foreseen also for SOLID
		Hall B - CLAS, CLAS12		р	Y	solid state	NH_3		"FROST", frozen spin
				n		solid state	ND ₃	NIM A 684 (2012) 27	mode, not polarized in situ, also ⁶ LiH and ⁶ LiD
				nn	V	solid state	HD	NIM A 815 (2016) 31	"HDice" frozen spin mode

GASEOUS PTs

- e-beams can operate with gaseous PTs preserving luminosity thanks to the beam intensities
 - Low target density
 - Frequent polarization reversal
 - Limited dilution factor for H, D atomic gasses (molecular content at the ~20% level)

1st Euro

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB (fix target at CEBAF)
- Take-away messages

KINEMATIC COVERAGE

Studying TMD distributions means exploring them in a wide kinematic range

 Facilities and experiments can give access to portions of the kinematic domain of interest, typically presented in the (x, Q²) plane; the different experimental efforts, therefore, globally offer a powerful strategy based on complementarity

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB (fix target at CEBAF)
- Take-away messages

The HERA polarized lepton beam scattering off a gaseous polarized jet target (also non polarized targets used)

The HERA polarized lepton beam scattering off a gaseous polarized jet target (also non polarized targets used)

The HERA polarized lepton beam scattering off a gaseous polarized jet target (also non polarized targets used)

PID system:

- EMcal by lead glass (also used in trigger)
- Pre-shower, 2 X₀ lead followed by scint. Hodoscope (also used in trigger)
- **ToF** hodoscope H1
- TRD (Transition Radiation Detector) for momenta >5 GeV/c; 6 identical modules with radiator and MWPCs are sensors (making use of both TR and dE/dx in the Xe/CH₄)
- Cherenkov threshold; after
 1998 RICH

HERMES PID system, a hint about performance

- e/h separation at trigger level (factor ~10 h rejection)
- e/h separation in data analysis (factor ~ 10⁴)
- hPID identification (enhanced with the RICH) for <u>SIDIS</u> <u>studies</u>

x-bin	h:e production up to 400:1			
	e ⁺ eff. (%)	h ⁺ cont. (%)		
0.023-0.04	97.77	1.18		
0.04-0.055	98.38	0.81		
0.055-0.075	98.78	0.55		
0.075-0.1	99.21	0.37		
0.1-0.14	99.44	0.22		
0.14-0.2	99.64	0.16		
0.2–0.3	99.71	0.16		
0.3–0.4	99.72	0.16		
0.4–0.6	99.72	0.11		

- Dual radiator configuration (following DELPHI barrel RICH)
- First RICH using aerogel, second radiator: C₄F₁₀
- HERMES: 2 identical RICH counters

1st European Summer School on the Physics of the EIC

HERMES RICH

NIM A 479 (2002) 511

More than one track (42% of all SIDIS event):

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB (fix target at CEBAF)
- Take-away messages

SIDIS-dedicated Experiments: COMPASS

S.Dalla Torre

SIDIS-dedicated Experiments: COMPASS

HODOSCOPES & TRIGGER

Scintillating counter hodoscopes, main components of the trigger

Veto counters by scintillator counters (beam halo !)

A stand-alone **calorimetric trigger** covers the high Q² range where the scattered muon does not reach the trigger hodoscopes.

S.Dalla Torre

SIDIS-dedicated Experiments:

trackers

- Grouped according to the area to cover and the rates to handles
- No vertex detector compatible with the large-size solid-state polarized target
- VSATs
 - Si microstrips
 - SciFi's
 - SATs
 - MicroMegas (12 trackers, 40x 40 cm²)
 - GEMs (22 trackers, 31x 31 cm²)
 - LATs
 - Drift Chambers
 - Straw tubes
 - MWPCs
 - Large area Drift Chambers

COMPASS

SIDIS-dedicated Experiments:

SIDIS-dedicated Experiments: COMPASS

Particle momentum from trackers and analyzing magnets \rightarrow

1st spectrometer SM1: 1 Tm σ_p/p = 1.2 % (p > 2 GeV/c)

2nd spectrometer

- SM2: 4.4 Tm
 - σ_p/p = 0.5 % (p > 5 GeV/c)

SIDIS-dedicated Experiments: COMPASS

PID – 1 μ identification

- By muon filters: muon
 when the particle
 trajectory continues
 after an absorber thick
 enough to stop the
 incoming h
 - 1st absorber: Fe
 wall (60 cm thick);
 central hole:
 1.4 x 0.9m²
 - 2nd absorber:
 concrete wall
 (2.4 m thick)

SIDIS-dedicated Experiments: COMPASS

PID – 2 CALORIMTERS

- HCAL1, HCAL2 sampling hadron calorimeters (Fe, scintillating plates)
 - Measure h energy, contribute in muon identification; $\sigma(E)/E = (59.4 \pm 2.9)\%/\sqrt{E} \oplus (7.6 \pm 0.4)\%$ $\sigma(E)/E = (66/\sqrt{E} \oplus 5)\%$
 - e/π response: 1.2 +/- 0.1
- ECAL2 homogeneous electromagnetic by lead glass (different block size from center to periphery)
 - Measure the energy of the electromagnetic showers $\sigma(E)/E = 5.5\%/\sqrt{E} \oplus 1.5\%$ $\sigma(x) = 6 \text{ mm}/\sqrt{E} \oplus 0.5 \text{ mm}|$

of the EIC S.Dalla Torre

SIDIS-dedicated Experiments:

NIM A 970 (2020) 163768

SIDIS-dedicated Experiments: COMPASS

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB (fix target at CEBAF)
- Take-away messages

44

SIDIS-dedicated Experiments: JLab experimental scope for the 12 GeV program

Торіс	Hall A	Hall B	Hall C	Hall D	Total
The Hadron spectra as probes of QCD					
(<i>GlueX</i> and heavy baryon and meson spectroscopy)		1		1	2
The transverse structure of the hadrons					
(Elastic and transition Form Factors)	4	3	2		9
The longitudinal structure of the hadrons					
(Unpolarized and polarized parton distribution					
functions)	2	2	5		9
The 3D structure of the hadrons					
(Generalized Parton Distributions and Transverse					
Momentum Distributions)	5	10	3		18
Hadrons and cold nuclear matter					
(Medium modification of the nucleons, quark					
hadronization, N-N correlations, hypernuclear					
spectroscopy, few-body experiments)	3	2	6		11
Low-energy tests of the Standard Model and					
Fundamental Symmetries	2			1	3
TOTAL	16	18	16	2	52

SIDIS-dedicated measurements included in the physics scope

SIDIS-dedicated Experiments: JLab experimental setup for the 12 GeV program

SIDIS-dedicated Experiments: JLab HALL C - HMS and Super HMS

Trackers

analysis

PID!

ECal with

Magnet for p

PMT 3

Mirror 1 Mirror 2

PMT 1

Mirror 3

Mirror 4

pre-shoer

SIDIS-dedicated Experiments: JLab HALL A - BB and SBB, SOLID

SIDIS-dedicated Experiments: JLab HALL B - CLAS12 (CEBAF Large Acceptance Spectrometer 12 GeV)

SIDIS-dedicated Experiments: JLab HALL B - CLAS12 (CEBAF Large Acceptance Spectrometer 12 GeV)

Electromagnetic calorimeter:NIM A 959PCAL + EC(2020) 163425Sampling calorimetry with stereo read-out

Scope: identification and kinematical reconstruction of electrons, photons (e.g. from $\pi^0 \rightarrow \gamma\gamma$ and $\eta \rightarrow \gamma\gamma$ decays), and neutrons.

SIDIS-dedicated Experiments: JLab HALL B - CLAS12 (CEBAF Large Acceptance Spectrometer 12 GeV) PID: e/h HALL B - CLAS12 (CEBAF Large Acceptance Spectrometer 12 GeV)

LTCC: <u>threshold Cherenkov</u> <u>counter (C_4F_{10}),</u> 4 boxes, Acceptance: 5° - 35°, e/h separation up to 3.5 GeV

HTCC: threshold Cherenkov counter (CO₂),

51

Acceptance: 5° - 35°, e/h separation up to 4.9 GeV

SIDIS-dedicated Experiments: JLab HALL B - CLAS12 (CEBAF Large Acceptance Spectrometer 12 Ge

S-dedicated Experiments: JLab HALL B - CLAS12 (CEBAF Large Acceptance Spectrometer 12 Gev (2/2) SIDIS-dedicated Experiments: JLab **RICH response for h** RICH 6 cm spherical [mrad] **Aerogel**, n = 1.05 mirror plane mirror **MAPMTs** G Cher.

P [GeV/c]

P = 5 GeV

P = 7 GeV

0.5

M² [GeV²]

0

Corigliano-Rossano, 18-22 June 2023

Facilities and experiments (I), OVERVIEW

- Introduction
- From DIS to SIDIS
- SIDIS-dedicated Experiments:
 - HERMES (fix target at the HERA collider, DESY)
 - COMPASS (fix target at the CERN muon-beam)
 - JLAB (fix target at CEBAF)

Take-away messages

- **TMD domain** is a composite and complex one: 8 independent structure functions
 - Important dedicated work ongoing (status of the result panorama in the following part)
- What is needed ?

S

Take-away message

- Facilities making DIS and SIDIS measurement possible
 - Intense lepton beam, variety of the center of mass energies aiming at covering the whole kinematic domain of interest
 - Large acceptance detectors
- Polarization: leptons and hadrons
- Identification of the scattered lepton
- Hadron PID: flavor-dependent TMDs
- Technological progress is key !
 - Beam energy and experiment luminosity
 - Polarized sources for the beams, polarimeters
 - Polarized targets (solid state and gaseous)
 - Detector coping with the challenges (intensity, resolution, PID)

Corigliano-Rossano, 18-22 June 2023

1st European Summer School on the Physics of the EIC

- **TMD domain** is a composite and complex one: 8 independent structure functions
 - Important dedicated work ongoing (status of the result panorama in the following part)
- What is needed?

S

Take-away message

- **Facilities** making DIS and SIDIS measurement possible •
 - Intense lepton beam, variety of the center of mass energies aiming at covering the whole • kinematic domain of interest
 - Large acceptance detectors •
- **Polarization**: leptons and hadrons
- Identification of the scattered lepton •
- Hadron PID: flavor-dependent TMDs •
- Technological progress is key !
 - Beam energy and experiment luminosity •
 - Polarized sources for the beams, polarimeters •
 - Polarized targets (solid state and gaseous) •
 - Detector coping with the challenges (intensity, resolution, PID)

Corigliano-Rossano, 18-22 June 2023

1st European Summer School on the Physics of the EIC

INFN

56

THANK YOU

BACKUP SLIDES

58

ENERGY & LUMINOSITY, past, present and future

PAST & PRESENT

FUTURE:

precision

٠

wide kinematic range, also access to high x-region

mer School on the Physics of the EIC

59

INFN

S.Dalla Torre