Theory of TMDs

Alessandro Bacchetta (Pavia U. and INFN) alessandro.bacchetta@unipv.it

European Summer School on the Physics of the Electron-Ion Collider June 18-22, 2023
Corigliano-Rossano Italy

Plan of the lectures

\checkmark Review the idea of structure functions for DIS and introduce them for semiinclusive DIS
\checkmark Introduce the idea of quark-quark correlation functions
\checkmark Parametrize correlation functions in terms of PDFs or Transverse Momentum Distributions (TMDs)
\checkmark Obtain the expression of structure functions for semi-inclusive DIS in terms of TMDs

- Discuss concept of TMD factorization and TMD evolution
- Discuss a bit of phenomenology

Final formula for hadronic tensor

$$
\begin{aligned}
& 2 M W^{\mu \nu}\left(q, P, S, P_{h}\right)=\frac{2 z_{h}}{x_{B}} \mathcal{C}\left[\operatorname{Tr}\left(\Phi\left(x_{B}, \boldsymbol{p}_{T}, S\right) \gamma^{\mu} \Delta\left(z_{h}, \boldsymbol{K}_{T}\right) \gamma^{\nu}\right)\right] \\
& \mathcal{C}[w f D]=\sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{K}_{T} \delta^{(2)}\left(z \boldsymbol{p}_{T}-\boldsymbol{K}_{T}-\boldsymbol{P}_{h \perp}\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{K}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, K_{T}^{2}\right),
\end{aligned}
$$

Final formula for hadronic tensor

$$
\begin{aligned}
& 2 M W^{\mu \nu}\left(q, P, S, P_{h}\right)=\frac{2 z_{h}}{x_{B}} \mathcal{C}\left[\operatorname{Tr}\left(\Phi\left(x_{B}, \boldsymbol{p}_{T}, S\right) \gamma^{\mu} \Delta\left(z_{h}, \boldsymbol{K}_{T}\right) \gamma^{\nu}\right)\right] \\
& \mathcal{C}[w f D]=\sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{K}_{T} \delta^{(2)}\left(z \boldsymbol{p}_{T}-\boldsymbol{K}_{T}-\boldsymbol{P}_{h \perp}\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{K}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, K_{T}^{2}\right),
\end{aligned}
$$

Only at low transverse momentum

$$
\boldsymbol{P}_{h \perp}^{2} \ll Q^{2}
$$

Quark-quark correlation functions

$$
\begin{aligned}
\Phi_{i j}(x, S) & =\int d^{2} \boldsymbol{p}_{T} \Phi_{i j}\left(x, \boldsymbol{p}_{T}\right) \\
& =\left.\int \frac{d \xi^{-}}{2 \pi} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=\boldsymbol{\xi}_{T}=0}
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{i j}\left(x, \boldsymbol{p}_{T}, S\right) & =\left.\int d p^{-} \Phi(p, P, S)\right|_{p^{+}=x P^{+}} \\
& =\left.\int \frac{d \xi^{-} d^{2} \boldsymbol{\xi}_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=0}
\end{aligned}
$$

ξ_{T}

$$
\xi^{-}
$$

Quark-quark correlation functions

$$
\begin{aligned}
\Phi_{i j}(x, S) & =\int d^{2} \boldsymbol{p}_{T} \Phi_{i j}\left(x, \boldsymbol{p}_{T}\right) \\
& =\left.\int \frac{d \xi^{-}}{2 \pi} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=\boldsymbol{\xi}_{T}=0}
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{i j}\left(x, \boldsymbol{p}_{T}, S\right) & =\left.\int d p^{-} \Phi(p, P, S)\right|_{p^{+}=x P^{+}} \\
& =\left.\int \frac{d \xi^{-} d^{2} \boldsymbol{\xi}_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=0}
\end{aligned}
$$

ξ_{T}

$$
\xi^{-}
$$

Quark-quark correlation functions

$$
\begin{aligned}
\Phi_{i j}(x, S) & =\int d^{2} \boldsymbol{p}_{T} \Phi_{i j}\left(x, \boldsymbol{p}_{T}\right) \\
& =\left.\int \frac{d \xi^{-}}{2 \pi} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=\boldsymbol{\xi}_{T}=0}
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{i j}\left(x, \boldsymbol{p}_{T}, S\right) & =\left.\int d p^{-} \Phi(p, P, S)\right|_{p^{+}=x P^{+}} \\
& =\left.\int \frac{d \xi^{-} d^{2} \boldsymbol{\xi}_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=0} \\
& \xi_{T} \underbrace{}_{\xi^{-}}
\end{aligned}
$$

Gauge link

Need of a gauge link

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
$$

Need of a gauge link

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
$$

not invariant under $\quad \psi(\xi) \rightarrow e^{i \alpha(\xi)} \psi(\xi)$

Need of a gauge link

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
$$

not invariant under $\quad \psi(\xi) \rightarrow e^{i \alpha(\xi)} \psi(\xi)$

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle
$$

Need of a gauge link

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
$$

not invariant under $\quad \psi(\xi) \rightarrow e^{i \alpha(\xi)} \psi(\xi)$

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle
$$

Need of a gauge link

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
$$

not invariant under $\quad \psi(\xi) \rightarrow e^{i \alpha(\xi)} \psi(\xi)$

$$
\begin{gathered}
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle \\
U\left(\xi_{1}, \xi_{2}\right) \rightarrow e^{i \alpha\left(\xi_{1}\right)} U\left(\xi_{1}, \xi_{2}\right) e^{-i \alpha\left(\xi_{2}\right)}
\end{gathered}
$$

Need of a gauge link

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
$$

not invariant under $\quad \psi(\xi) \rightarrow e^{i \alpha(\xi)} \psi(\xi)$

$$
\Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P, S\rangle
$$

$$
U\left(\xi_{1}, \xi_{2}\right) \rightarrow e^{i \alpha\left(\xi_{1}\right)} U\left(\xi_{1}, \xi_{2}\right) e^{-i \alpha\left(\xi_{2}\right)}
$$

$$
U_{[a, b]}=\mathcal{P} \exp \left[-i g \int_{a}^{b} d \eta^{\mu} A_{\mu}(\eta)\right]
$$

Origin of gauge link

(a)

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)

Origin of gauge link

(a)

$$
2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not \neq-l}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle
$$

Origin of gauge link

(a)

$$
2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not \neq-1}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle
$$

Origin of gauge link

(a)

$$
\begin{aligned}
2 M W_{\mu \nu}^{(a)} \sim & \sim d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not \not-1}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
& i \frac{\not \not-l}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon}
\end{aligned}
$$

Origin of gauge link

(a)

$$
\begin{aligned}
2 M W_{\mu \nu}^{(a)} & \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not \not-1}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
& i \frac{\not \not-l}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon}
\end{aligned}
$$

Origin of gauge link

(a)

$$
\begin{aligned}
2 M W_{\mu \nu}^{(a)} & \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not\langle-l}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
& i \frac{\not k-l}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon} \quad \text { eikonal approximation }
\end{aligned}
$$

Origin of gauge link

(a)

$$
\begin{aligned}
& 2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}}{ }^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\nexists-l}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
& i \frac{\not k-l}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon} \text { eikonal approximation } \\
& \left.2 M W_{\mu \nu}^{(a)} \sim \int \frac{d \eta^{-}}{2 \pi} \int d l^{+} e^{i l^{+}\left(\eta^{-}-\xi^{-}\right)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \frac{\gamma^{-} \gamma^{+}}{2} \gamma_{\nu}(i g) \frac{A^{+}(\eta)}{-l^{+}+i \epsilon} \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+} \\
\boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}}
\end{aligned}
$$

Origin of gauge link

(a)

$$
2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not \hbar-1}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle
$$

$$
i \frac{\not \not-1}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon}
$$

$$
\left.2 M W_{\mu \nu}^{(a)} \sim \int \frac{d \eta^{-}}{2 \pi} \int d l^{+} e^{i l^{+}\left(\eta^{-}-\xi^{-}\right)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \frac{\gamma^{-} \gamma^{+}}{2} \gamma_{\nu}(i g) \frac{A^{+}(\eta)}{-l^{+}+i \epsilon} \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+} \\ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}}
$$

$$
\left.2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+} \\ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}}
$$

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)

Origin of gauge link

(a)

$$
2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\nexists-1}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle
$$

$$
i \frac{\not b-l}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon}
$$

eikonal approximation

$$
\left.2 M W_{\mu \nu}^{(a)} \sim \int \frac{d \eta^{-}}{2 \pi} \int d l^{+} e^{i l^{+}\left(\eta^{-}-\xi^{-}\right)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \frac{\gamma^{-} \gamma^{+}}{2} \gamma_{\nu}(i g) \frac{A^{+}(\eta)}{-l^{+}+i \epsilon} \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+} \\ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}}
$$

$$
\left.2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+} \\ \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}}
$$

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)

Origin of gauge link

(a)

$$
\begin{aligned}
& 2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not\langle-\nmid}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
& i \frac{\not x-1}{(k-l)^{2}+i \epsilon} \approx i \frac{k^{-} \gamma^{+}}{-2 l^{+} k^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}+i \epsilon} \\
& \text { eikonal approximation } \\
& \left.2 M W_{\mu \nu}^{(a)} \sim \int \frac{d \eta^{-}}{2 \pi} \int d l^{+} e^{i l^{+}\left(\eta^{-}-\xi^{-}\right)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \frac{\gamma^{-} \gamma^{+}}{2} \gamma_{\nu}(i g) \frac{A^{+}(\eta)}{-l^{+}+i \epsilon} \psi(\xi)|P, S\rangle\right|_{\substack{\eta^{+}=\xi^{+} \\
\boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}} \\
& 2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle \left\lvert\, \begin{array}{l}
\eta^{+}=\xi^{+}=0 \\
\eta_{T}=\boldsymbol{\xi}_{T}=0
\end{array}\right.
\end{aligned}
$$

Ji, Yuan, PLB 543 (02); Belitsky, Ji, Yuan, NPB656 (03)

First contribution to gauge link

$$
2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle
$$

First contribution to gauge link

$$
2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle
$$

compare with:

$$
2 M W^{\mu \nu}(q, P, S) \approx \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi\left(x_{B}, S\right) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]
$$

\circ

First contribution to gauge link

$$
2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle
$$

compare with:

$$
\begin{gathered}
2 M W^{\mu \nu}(q, P, S) \approx \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi\left(x_{B}, S\right) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right] . \\
\Phi^{(a)}(x, S) \sim\langle P, S| \bar{\psi}(0)(-i g) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle
\end{gathered}
$$

Feynman rules for eikonal lines

Figure 13. Feynman rules involving eikonal lines along the direction v. The colour indices r and s refer to either the fundamental or the adjoint representation, whereas j and k are colour triplet and a, b and c are colour octet indices.

Gauge link in collinear PDFs

Gauge link in collinear PDFs

Gauge link in collinear PDFs

Gauge link for TMDs

$$
\Phi_{i j}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{8 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

Gauge link for TMDs

$$
\Phi_{i j}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{8 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

SIDIS

$$
U_{[+]}
$$

Key point (graphically)

Key point (graphically)

Key point (graphically)

Key point (graphically)

Gauge links in Drell-Yan

$2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}}{ }^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not \subset-l}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle$

Gauge links in Drell-Yan

$2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}}{ }^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not \subset-l}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle$

Gauge links in Drell-Yan

$$
\begin{gathered}
2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not k-\nless}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\alpha}(\eta) \psi(\xi)|P, S\rangle \\
i \frac{\not p-l+m}{(k-l)^{2}-m^{2}+i \epsilon} \approx i \frac{-(-k)^{-} \gamma^{+}}{2 l^{+}(-k)^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}-i \epsilon}
\end{gathered}
$$

Gauge links in Drell-Yan

$$
\begin{gathered}
\left.2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not x-\nless}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\prime}, \eta\right) \psi(\xi)|P, S\rangle \\
i \frac{\not x-l+m}{(k-l)^{2}-m^{2}+i \epsilon} \approx i \frac{-(-k)^{-} \gamma^{+}}{2 l^{+}(-k)^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}-i \epsilon}
\end{gathered}
$$

Gauge links in Drell-Yan

$$
\begin{gathered}
\left.2 M W_{\mu \nu}^{(a)} \sim \int d^{4} l \int \frac{d^{4} \eta}{(2 \pi)^{4}} e^{i l \cdot(\eta-\xi)}\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\alpha} \frac{\not p-\nless}{(k-l)^{2}+i \epsilon} \gamma_{\nu} g A^{\varphi} \eta\right) \psi(\xi)|P, S\rangle \\
\\
i \frac{\not p-l+m}{(k-l)^{2}-m^{2}+i \epsilon} \approx i \frac{-(-k)^{-} \gamma^{+}}{2 l^{+}(-k)^{-}+i \epsilon} \approx \frac{i}{2} \frac{\gamma^{+}}{-l^{+}-i \epsilon} \\
\left.2 M W_{\mu \nu}^{(a)} \sim\langle P, S| \bar{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu}(-i g) \int_{-\infty^{-}}^{\xi^{-}} \mathrm{d} \eta^{-} A^{+}(\eta) \psi(\xi)|P, S\rangle\right|_{\eta^{+}=0 ; \boldsymbol{\eta}_{T}=\boldsymbol{\xi}_{T}}
\end{gathered}
$$

Gauge link for TMDs

$$
\Phi_{i j}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{8 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

Gauge link for TMDs

$$
\Phi_{i j}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{8 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

SIDIS

$$
U_{[+]}
$$

Gauge link for TMDs

$$
\Phi_{i j}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{8 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}_{j}(0) U_{[0, \xi]} \psi_{i}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

SIDIS

$$
U_{[+]}
$$

Drell-Yan

$$
U_{[-]}
$$

Gauge link and (naive) T-odd functions

- Time reversal determines whether the gauge link goes to + or - infinity
- In the collinear case, where the gauge link turns out to be the same, this means that a certain class of PDFs (called "T-odd" or "naive T-odd") has to vanish
- In the TMD case, however, the gauge links are different and this means that it is possible to have T-odd functions (Boer-Mulders and Sivers)

Key point

- Gauge links have a staple-like shape
- Different processes have different gauge links
- Gauge links are there also for collinear PDFs, but they are "trivial" and universal
- The difference in the gauge links makes it possible to have T-odd TMDs

Basic ideas about factorization

Factorization for Drell-Yan

Figure 3.1: (a) Graphical structure corresponding to leading regions in Drell-Yan scattering, before factorization. Green gluons are collinear to lines in the A-blob, red gluons are collinear to lines in the B-blob, and blue gluons have nearly zero momentum (soft). (b) Separation into hard, soft, and collinear parts after approximations and Ward identities-see Sec. 3.2.5.

Factorization for Drell-Yan

$$
\frac{\mathrm{d} \sigma^{\mathrm{W}}}{\mathrm{dQd} Y \mathrm{~d}^{2} \mathbf{q}_{T}}=\sum_{\text {flavors } i} H_{i \overline{ }}\left(Q^{2}, \mu\right) \int \mathrm{d}^{2} \mathbf{b}_{T} e^{i \mathbf{b}_{T} \cdot \mathbf{q}_{T}} \tilde{f}_{i / p}\left(x_{a}, \mathbf{b}_{T}, \mu, \zeta_{a}\right) \tilde{f}_{\bar{i} / p}\left(x_{b}, \mathbf{b}_{T}, \mu, \zeta_{b}\right)
$$

Factorization for SIDIS

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right] \\
& =H\left(Q^{2}, \mu^{2}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& \quad x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
\end{aligned}
$$

Factorization for SIDIS

$$
F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right]
$$

$$
=H\left(Q^{2}, \mu^{2}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right)
$$

Hard part

$$
x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
$$

$$
\begin{aligned}
& \text { unsubtracted TMD PDF } \\
& \text { unsubtracted TMD FF }
\end{aligned}
$$

Factorization for SIDIS

$$
\begin{aligned}
& F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right) \\
& \quad=x \sum_{a} \mathcal{H}_{U U, T}^{q}\left(Q^{2}, \mu\right) \int d b_{T} b_{T} J_{0}\left(b_{T}\left|\boldsymbol{P}_{h \perp}\right|\right) \hat{f}_{1}^{q}\left(x, z^{2} b_{\perp}^{2} ; \mu, \zeta\right) \hat{D}_{1}^{a \rightarrow h}\left(z, b_{\perp}^{2} ; \mu, \zeta_{h}\right)
\end{aligned}
$$

Factorization for SIDIS

$$
\begin{aligned}
& F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right) \\
& \quad=x \sum_{a} \mathcal{H}_{U U, T}^{q}\left(Q^{2}, \mu\right) \int d b_{T} b_{T} J_{0}\left(b_{T}\left|\boldsymbol{P}_{h \perp}\right|\right) \hat{f}_{1}^{q}\left(x, z^{2} b_{\perp}^{2} ; \mu, \zeta\right) \hat{D}_{1}^{a \rightarrow h}\left(z, b_{\perp}^{2} ; \mu, \zeta_{h}\right) \\
& \text { renormalized TMD PDF } \\
& \text { renormalized TMD FF }
\end{aligned}
$$

Key point

The parton-model results are still valid, but we the additional dependence on two scales and the addition of a hard factor

One loop analysis (quark-in-quark case)

Separation into various regions

Factorization breaking in pp collisions

Rogers, Mulders, arXiv:1001.2977

Soft factor at one loop

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{\mathrm{T}}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$
\mathcal{M}_{S}=2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}} \frac{-i}{\left(2 k^{+} k^{-}-\mathbf{k}_{T}^{2}+i 0\right)} \frac{1}{\left(k^{+}-i 0\right)\left(-k^{-}+i 0\right)}
$$

Soft factor at one loop

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{\mathrm{T}}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.
$\mathcal{M}_{S}=2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}} \frac{-i}{\left(2 k^{+} k^{-}-\mathbf{k}_{T}^{2}+i 0\right)} \frac{1}{\left(k^{+}-i 0\right)\left(-k^{-}+i 0\right)}$

$$
\frac{1}{k^{2}+i 0} \rightarrow 2 \operatorname{Im}\left(\frac{1}{k^{2}+i 0}\right)=-2 \pi i \theta\left(k^{0}\right) \delta\left(k^{2}\right) \equiv-2 \pi i \delta_{+}\left(k^{2}\right)
$$

Soft factor at one loop

(a)

(b)

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{\mathrm{T}}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$
\begin{aligned}
\mathcal{M}_{S} & =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}} \frac{-i}{\left(2 k^{+} k^{-}-\mathbf{k}_{T}^{2}+i 0\right)} \frac{1}{\left(k^{+}-i 0\right)\left(-k^{-}+i 0\right)} \\
& =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}(2 \pi) \delta_{+}\left(k^{2}\right) \frac{1}{k^{+} k^{-}} \\
& =\frac{g_{0}^{2} C_{F}}{\pi} \int \frac{\mathrm{~d}^{2-2 \epsilon} \mathbf{k}_{T}}{(2 \pi)^{d-2}} \frac{e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k^{-}}
\end{aligned}
$$

Soft factor at one loop

(a)

(b)

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{\mathrm{T}}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$
\begin{aligned}
\mathcal{M}_{S} & =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}} \frac{-i}{\left(2 k^{+} k^{-}-\mathbf{k}_{T}^{2}+i 0\right)} \frac{1}{\left(k^{+}-i 0\right)\left(-k^{-}+i 0\right)} \\
& =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}(2 \pi) \delta_{+}\left(k^{2}\right) \frac{1}{k^{+} k^{-}} \\
& =\frac{g_{0}^{2} C_{F}}{\pi} \int \frac{\mathrm{~d}^{2-2 \epsilon} \mathbf{k}_{T}}{(2 \pi)^{d-2}} \frac{e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k^{-}} . \\
& \text {UV and IR divergences }
\end{aligned}
$$

Soft factor at one loop

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{\mathrm{T}}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$
\begin{aligned}
\mathcal{M}_{S} & =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}} \frac{-i}{\left(2 k^{+} k^{-}-\mathbf{k}_{T}^{2}+i 0\right)} \frac{1}{\left(k^{+}-i 0\right)\left(-k^{-}+i 0\right)} \\
& =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}(2 \pi) \delta_{+}\left(k^{2}\right) \frac{1}{k^{+} k^{-}} \\
& =\frac{g_{0}^{2} C_{F}}{\pi} \int \frac{\mathrm{~d}^{2-2 \epsilon} \mathbf{k}_{T}}{(2 \pi)^{d-2}} \frac{e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k^{-}} . \\
& \text {UV and IR divergences }
\end{aligned}
$$

Soft factor at one loop

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{\mathrm{T}}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$
\begin{aligned}
\mathcal{M}_{S} & =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}} \frac{-i}{\left(2 k^{+} k^{-}-\mathbf{k}_{T}^{2}+i 0\right)} \frac{1}{\left(k^{+}-i 0\right)\left(-k^{-}+i 0\right)} \\
& =2 g_{0}^{2} C_{F} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}(2 \pi) \delta_{+}\left(k^{2}\right) \frac{1}{k^{+} k^{-}} \\
& =\frac{g_{0}^{2} C_{F}}{\pi} \int \frac{\mathrm{~d}^{2-2 \epsilon} \mathbf{k}_{T}}{(2 \pi)^{d-2}} \frac{e^{i \mathbf{b}_{T} \cdot \mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k_{-}^{-}} . \\
& \text {UV and IR divergences }
\end{aligned}
$$

Soft factor

regulate the rapidity divergence (different prescriptions are used)

$$
\int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k^{-}} \rightarrow w^{2}\left(\frac{v}{\sqrt{2}}\right)^{\tau} \int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k^{-}}\left|\frac{\mathbf{k}_{T}^{2}}{2 k^{-}}-k^{-}\right|^{-\tau}=\frac{v^{\tau} k_{T}^{-\tau}}{2^{\tau} \sqrt{\pi}} \Gamma\left(\frac{1}{2}-\frac{\tau}{2}\right) \Gamma\left(\frac{\tau}{2}\right)
$$

Soft factor

regulate the rapidity divergence (different prescriptions are used)

$$
\begin{aligned}
& \text { rapidity scale, most often denoted by } \sqrt{\zeta}
\end{aligned}
$$

Soft factor

regulate the rapidity divergence (different prescriptions are used)

$$
\begin{align*}
& \int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k^{-}} \rightarrow w^{2}\left(\frac{v}{\sqrt{2}}\right)^{\tau} \int_{0}^{\infty} \frac{\mathrm{d} k^{-}}{k^{-}}\left|\frac{\mathbf{k}_{T}^{2}}{2 k^{-}}-k^{-}\right|^{-\tau}= \\
& \\
& \tag{2.77}\\
& \quad \text { rapidity scale, most often denoted by } \sqrt{\zeta} \frac{v^{\tau} k_{T}^{-\tau}}{2^{\tau} \sqrt{\pi}} \Gamma\left(\frac{1}{2}-\frac{\tau}{2}\right) \Gamma\left(\frac{\tau}{2}\right) \\
& \tilde{S}_{q}^{0(1)}\left(b_{T}, \epsilon, \tau\right)=\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left[\frac{2}{\epsilon^{2}}+4\left(\frac{1}{\epsilon}+L_{b}\right)\left(-\frac{1}{\tau}+\ln \frac{\mu}{v}\right)-L_{b}^{2}-\frac{\pi^{2}}{6}\right]+O(\tau)+O(\epsilon)
\end{align*}
$$

Renormalized TMD for quark-in-quark

Renormalized TMD for quark-in-quark

The final "renormalized" or subtracted TMD depends on two arbitrary scales, introduced in the procedure of regularizing the divergences.

The physical TMDs will be of course different from the perturbative ones, but the dependence on these two scales should be the same as the perturbative

Renormalized TMD for quark-in-quark

The final "renormalized" or subtracted TMD depends on two arbitrary scales, introduced in the procedure of regularizing the divergences.

The physical TMDs will be of course different from the perturbative ones, but the dependence on these two scales should be the same as the perturbative

$$
\begin{aligned}
\tilde{f}_{q^{\prime} / q}^{(1)}\left(x, b_{T}, \mu, \zeta\right)=\delta_{q^{\prime} q} \delta(1-x)+\delta_{q^{\prime} q} \frac{\alpha_{S}(\mu) C_{F}}{2 \pi}[& -\left(\frac{1}{\epsilon}+L_{b}\right)\left[P_{q q}(x)\right]_{+}+(1-x) \\
& \left.+\delta(1-x)\left(-\frac{L_{b}^{2}}{2}+L_{b}\left(\frac{3}{2}+\ln \frac{\mu^{2}}{\zeta}\right)-\frac{\pi^{2}}{12}\right)\right]
\end{aligned}
$$

slightly corrected version of Eq. (2.81)

Renormalized TMD for quark-in-quark

The final "renormalized" or subtracted TMD depends on two arbitrary scales, introduced in the procedure of regularizing the divergences.

The physical TMDs will be of course different from the perturbative ones, but the dependence on these two scales should be the same as the perturbative

$$
\begin{aligned}
\tilde{f}_{q^{\prime} / q}^{(1)}\left(x, b_{T}, \mu, \zeta\right)=\delta_{q^{\prime} q} \delta(1-x)+\delta_{q^{\prime} q} \frac{\alpha_{S}(\mu) C_{F}}{2 \pi}[& -\left(\frac{1}{\epsilon}+L_{b}\right)\left[P_{q q}(x)\right]_{+}+(1-x) \\
& \left.+\delta(1-x)\left(-\frac{L_{b}^{2}}{2}+L_{b}\left(\frac{3}{2}+\ln \frac{\mu^{2}}{\zeta}\right)-\frac{\pi^{2}}{12}\right)\right]
\end{aligned}
$$

slightly corrected version of Eq. (2.81)

$$
L_{b}=\ln \frac{\mathbf{b}_{T}^{2} \mu^{2}}{b_{0}^{2}}, \quad \text { with } \quad b_{0}=2 e^{-\gamma_{E}}
$$

Rapidity scale dependence

$$
\begin{aligned}
& \tilde{f}_{q^{\prime} / q}^{(1)}\left(x, b_{T}, \mu, \zeta\right)=\delta_{q^{\prime} q} \delta(1-x)+\delta_{q^{\prime} q} \frac{\alpha_{S}(\mu) C_{F}}{2 \pi}[-\left(\frac{1}{\epsilon}+L_{b}\right)\left[P_{q q}(x)\right]_{+}+(1-x) \\
&\left.+\delta(1-x)\left(-\frac{L_{b}^{2}}{2}+L_{b}\left(\frac{3}{2}+\ln \frac{\mu^{2}}{\zeta}\right)-\frac{\pi^{2}}{12}\right)\right] \\
& L_{b}=\ln \frac{\mu^{2} \boldsymbol{b}_{T}^{2}}{b_{0}^{2}} \quad b_{0}=2 e^{-\gamma_{E}}=1.123 \mathrm{GeV}^{-1}
\end{aligned}
$$

$\frac{d \ln \tilde{f}^{(1)}}{d \ln \sqrt{\zeta}}=-\frac{\alpha_{S}(\mu) C_{F}}{\pi} \ln \frac{\mu^{2} \boldsymbol{b}_{T}^{2}}{b_{0}^{2}} \equiv \tilde{K} \equiv \gamma_{\zeta}$

$$
\frac{d \tilde{K}}{d \ln \mu}=-\frac{2 \alpha_{S}(\mu) C_{F}}{\pi} \equiv-\gamma_{K} \equiv-2 \Gamma_{\text {cusp }}
$$

Collins-Soper kernel
or rapidity anomalous dimension

Cusp anomalous dimension

UV scale dependence

$$
\begin{aligned}
& \tilde{f}_{q^{\prime} / q}^{(1)}\left(x, b_{T}, \mu, \zeta\right)=\delta_{q^{\prime} q} \delta(1-x)+\delta_{q^{\prime} q} \frac{\alpha_{S}(\mu) C_{F}}{2 \pi} {\left[-\left(\frac{1}{\epsilon}+L_{b}\right)\left[P_{q q}(x)\right]_{+}+(1-x)\right.} \\
&\left.+\delta(1-x)\left(-\frac{L_{b}^{2}}{2}+L_{b}\left(\frac{3}{2}+\ln \frac{\mu^{2}}{\zeta}\right)-\frac{\pi^{2}}{12}\right)\right] \\
& L_{b}=\ln \frac{\mu^{2} \boldsymbol{b}_{T}^{2}}{b_{0}^{2}} \quad b_{0}=2 e^{-\gamma_{E}}=1.123 \mathrm{GeV}^{-1}
\end{aligned}
$$

$$
\frac{d \ln \tilde{f}^{(1)}}{d \ln \sqrt{\zeta}}=-\frac{\alpha_{S}(\mu) C_{F}}{\pi} \ln \frac{\mu^{2} \boldsymbol{b}_{T}^{2}}{b_{0}^{2}} \equiv \tilde{K} \equiv \gamma_{\zeta}
$$

Collins-Soper kernel or rapidity anomalous dimension

$$
\frac{d \tilde{K}}{d \ln \mu}=-\frac{2 \alpha_{S}(\mu) C_{F}}{\pi} \equiv-\gamma_{K} \equiv-2 \Gamma_{\text {cusp }}
$$

Cusp anomalous dimension

UV anomalous dimension

$$
\frac{d \ln \tilde{f}^{(1)}}{d \ln \mu}=\frac{\alpha_{S}(\mu) C_{F}}{\pi}\left(\ln \frac{\mu^{2}}{\zeta}+\frac{3}{2}\right)=\Gamma_{\mathrm{cusp}} \ln \frac{\mu^{2}}{\zeta}+\gamma_{F} \equiv \gamma_{q} \equiv \gamma_{\mu}
$$

TMD two-scale evolution

Solution of evolution equation

$\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu_{0}, \zeta_{0}\right) \exp \left\{\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{q}\left[\alpha_{s}\left(\mu^{\prime}\right) ; \zeta_{0} / \mu^{\prime 2}\right]\right\} \exp \left\{\tilde{K}\left(b_{T} ; \mu\right) \ln \sqrt{\frac{\zeta}{\zeta_{0}}}\right\}$,
(4.17)

Solution of evolution equation

$$
\begin{equation*}
\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu_{0}, \zeta_{0}\right) \exp \left\{\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{q}\left[\alpha_{s}\left(\mu^{\prime}\right) ; \zeta_{0} / \mu^{\prime 2}\right]\right\} \exp \left\{\tilde{K}\left(b_{T} ; \mu\right) \ln \sqrt{\frac{\zeta}{\zeta_{0}}}\right\} \tag{4.17}
\end{equation*}
$$

Solution of evolution equation

$$
\begin{equation*}
\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu_{0}, \zeta_{0}\right) \exp \left\{\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{q}\left[\alpha_{s}\left(\mu^{\prime}\right) ; \zeta_{0} / \mu^{\prime 2}\right]\right\} \exp \left\{\tilde{K}\left(b_{T} ; \mu\right) \ln \sqrt{\frac{\zeta}{\zeta_{0}}}\right\} \tag{4.17}
\end{equation*}
$$

$\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)$

Solution of evolution equation

$$
\begin{equation*}
\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\tilde{f}_{i / P}\left(x, \mathbf{b}_{T}, \mu_{0}, \zeta_{0}\right) \exp \left\{\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{q}\left[\alpha_{s}\left(\mu^{\prime}\right) ; \zeta_{0} / \mu^{\prime 2}\right]\right\} \exp \left\{\tilde{K}\left(b_{T} ; \mu\right) \ln \sqrt{\frac{\zeta}{\zeta_{0}}}\right\} \tag{4.17}
\end{equation*}
$$

$\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)$
$\mathrm{NLL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)$

Final TMD Structure

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

Final TMD Structure

$$
\begin{aligned}
& \hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right) \\
& \hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\mu_{\mu_{乛_{*}} f_{t}} \frac{t_{\mu}}{\mu}}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text {resum }}}
\end{aligned}
$$

Final TMD Structure

$$
\begin{aligned}
& \hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right) \\
& \hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)}\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\mathrm{resum}}} \\
& \mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{T}}
\end{aligned}
$$

Final TMD Structure

$$
\begin{aligned}
& \hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right) \\
& \text { perturbative } \\
& \text { Sudakov form factor } \\
& \hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)}\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text {resum }}} \\
& \mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{T}} \quad \text { matching } \\
& \text { (perturbative) } \\
& \text { coefficients } \\
& \text { (perturbative) }
\end{aligned}
$$

Final TMD Structure

Final TMD Structure

What about extractions?

TMD tables: quark, leading twist

TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

TMD tables: quark, leading twist

Mulders-Tangerman, NPB 461 (96)
 Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_{1} and $g_{1 L}$

TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

TMD tables: quark, leading twist

Mulders-Tangerman, NPB 461 (96)
 Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_{1} and $g_{1 L}$
- Good knowledge of the k_{T} dependence of f_{1} (also for pions)

TMDs in black survive integration
over transverse momentum
TMDs in red are time-reversal odd

TMD tables: quark, leading twist

Mulders-Tangerman, NPB 461 (96)
 Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f_{1} and $g_{1 L}$
- Good knowledge of the k_{T} dependence of f_{1} (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)

TMD tables: quark, leading twist

Mulders-Tangerman, NPB 461 (96)

- Very good knowledge of x dependence of f_{1} and $g_{1 L}$
- Good knowledge of the k_{T} dependence of f_{1} (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)
- Some hints about all others

Quark, subleading twist

TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

Quark, subleading twist

Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side

TMDs in black survive integration
over transverse momentum
TMDs in red are time-reversal odd

Quark, subleading twist

Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pillman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of $\mathrm{gT}^{\text {t }}$ x-dependence

TMDs in black survive integration
over transverse momentum
TMDs in red are time-reversal odd

Quark, subleading twist

Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pil/man, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

* Lots of progress from the theory side
- Some knowledge of $\mathrm{gT}^{\text {t }}$ x-dependence

TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

Quark, subleading twist

Mulders-Tangerman, NPB 461 (96)
Boer-Mulders, PRD 57 (98)
Bacchetta, Mulders, Pillman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

* Lots of progress from the theory side
- Some knowledge of $\mathrm{gt}^{\text {t }}$ x-dependence

TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

Gluons, leading twist

	gluon pol.			
		U	L	linear
8	U	f_{1}^{g}		$h_{1}^{\perp g}$
\%	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
荷	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

TMDs in black survive integration
over transverse momentum
TMDs in red are time-reversal odd

Gluons, leading twist

- Good knowledge of x-dependence of f_{1} and $g_{1} L$

TMDs in black survive integration over transverse momentum
TMDs in red are time-reversal odd

Gluons, leading twist

	gluon pol.			
		U	L	linear
0	U	f_{1}^{g}		$h_{1}^{\perp g}$
\%	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

- Good knowledge of x-dependence of f_{1} and $g_{1} L$
- Some hints on the k_{T} dependence of f_{1}

TMDs in black survive integration
over transverse momentum
TMDs in red are time-reversal odd

Gluons, leading twist

	gluon pol.			
		U	L	linear
0	U	f_{1}^{g}		$h_{1}^{\perp g}$
\%	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

- Good knowledge of x-dependence of f_{1} and $g_{1} L$
- Some hints on the k_{T} dependence of f_{1}

TMDs in black survive integration
over transverse momentum
TMDs in red are time-reversal odd

"Old" fits for unpolarized TMD f_{1}

	Framewor k	HERMES	COMPASS	DY	Z production	N of points
$\text { KN } 2006$ hep-ph/0506225	NLL'	X	x	\checkmark	\checkmark	98
Pavia 2013 arXiv:1309.3507	LO	\checkmark	x	X	x	1538
Torino 2014 arXiv:1312.6261	LO	(separately)	(separately)	X	x	$\begin{array}{r} 576(\mathrm{H}) \\ 6284(\mathrm{C}) \\ \hline \end{array}$
DEMS 2014 arXiv:1407.3311	NNLL'	x	x	\checkmark	\checkmark	223
EIKV 2014 arXiv:1401.5078	NLL	1 ($\mathrm{x}, \mathrm{Q}^{2}$) bin	$1\left(\mathrm{x}, \mathrm{Q}^{2}\right) \mathrm{bin}$	\checkmark	\checkmark	500 (?)
SIYY arXiv:1406.3073	NLL'	qualitative	qualitative	\checkmark	\checkmark	140
Pavia 2017 arXiv:1703. 10157	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059
SV 2017 arXiv:1706.01473	NNLL'	x	x	\checkmark	\checkmark	309

2017: the dawn of TMD global fits era

Available fits for unpolarized TMD f_{1}

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	$\mathrm{X}^{2 /} \mathrm{N}_{\text {points }}$
$\begin{gathered} \text { Pavia } 2017 \\ \text { arXiv:1703.10157 } \end{gathered}$	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059	1.55
$\begin{gathered} \text { SV } 2019 \\ \text { arXiv:1912.06532 } \end{gathered}$	N3LL-	\checkmark	\checkmark	\checkmark	\checkmark	1039	1.06
$\begin{gathered} \text { MAP22 } \\ \text { arXiv:2206.07598 } \end{gathered}$	$\mathrm{N}^{3} \mathrm{LL}^{-}$	\checkmark	\checkmark	\checkmark	\checkmark	2031	1.06
ART23 arXiv:2305.07473	N4LL-			\checkmark	\checkmark	627	0.96

Comparison with PDFs

$x-Q^{2}$ coverage

MAP Collaboration
Bacchetta, Bertone, Bissolotti,

Scimemi, Vladimirov,
arXiv:1912.06532

$x-Q^{2}$ coverage

MAP Collaboration
Bacchetta, Bertone, Bissolotti,

Scimemi, Vladimirov,
arXiv:1912.06532

Available tools

= README.md

Nanga Parbat is a fitting framewark aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:
https://github.com/MapCollaboration/NangaParbat
For the last development branch you can clane the master code:
git clone gitegithub. com:MapCollaboration/NangaParbat.git

Available tools: artemide

News

Available tools: TMDlib and TMDplotter

Backup slides

Ingredients and accuracy

Accuracy
LL
NLL
NLL $^{\prime}$
NNLL $^{\prime}$
NNLL $^{\prime}$
$\mathrm{N}^{3} \mathrm{LL}^{2}$

K and γ_{F}	γ_{K}	α_{s} evolution
-	1	-
1	2	LO
1	2	NLO
2	3	NLO
2	3	NNLO
3	4	NNLO

$\gamma_{K}\left(\alpha_{s}(\mu)\right)$	$\beta\left[\alpha_{s}(\mu)\right]$	$\gamma_{q}\left(\alpha_{s}(\mu) ; 1\right)$	$\tilde{K}\left(\bar{b}_{T} ; 1 / \bar{b}_{T}\right)$	$\tilde{C}_{j / j^{\prime}}$	accuracy	accuracy (SCET)
-	-	-	-	0	QPM	
1	1	-	-	0	LO-LL	LL
2	2	1	1	0	LO-NLL	NLL
3	3	2	2	0	LO-NNLL	
2	2	1	1	1	NLO-NLL	NLL'
3	3	2	2	1	NLO-NNLL	NNLL
3	3	2	2	2	NNLO-NNLL	NNLL ${ }^{\prime}$
4	4	3	3	2	NNLO-N ${ }^{3} \mathrm{LL}$	$\mathrm{N}^{3} \mathrm{LL}$
4	4	3	3	3	$\mathrm{N}^{3} \mathrm{LO}-\mathrm{N}^{3} \mathrm{LL}$	$\mathrm{N}^{3} \mathrm{LL}^{\prime}$

Table 4.2: Orders of accuracy needed for evolution of TMD PDFs and other ingredients entering the

Matching with collinear PDFs

$$
\begin{equation*}
\tilde{f}_{i / p}\left(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{i / j}\left(x / \hat{x}, b_{T} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) f_{j / p}\left(\hat{x} ; \mu_{b_{*}}\right)+O\left(\left(m b_{*}\left(b_{T}\right)\right)^{p}\right) \tag{4.30}
\end{equation*}
$$

Matching with collinear PDFs

$$
\begin{align*}
& \text { matching coefficients } \tag{4.30}\\
& \tilde{f}_{i / p}\left(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{i / j}\left(x / \hat{x}, b_{T} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) f_{j / p}\left(\hat{x} ; \mu_{b_{*}}\right)+O\left(\left(m b_{*}\left(b_{T}\right)\right)^{p}\right) .
\end{align*}
$$

Matching with collinear PDFs

$$
\begin{align*}
& \quad \text { matching coefficients } \\
& \tilde{f}_{i / p}\left(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{i / j}\left(x / \hat{x}, b_{T} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) f_{j / p}\left(\hat{x} ; \mu_{b_{*}}\right)+O\left(\left(m b_{*}\left(b_{T}\right)\right)^{p}\right) . \tag{4.30}
\end{align*}
$$

Matching with collinear PDFs

$$
\begin{equation*}
\tilde{f}_{i / p}\left(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{i / j}\left(x / \hat{x}, b_{T} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) f_{j / p}\left(\hat{x} ; \mu_{b_{*}}\right)+O\left(\left(m b_{*}\left(b_{T}\right)\right)^{p}\right) . \tag{4.30}
\end{equation*}
$$

Matching with collinear PDFs

$$
\begin{equation*}
\tilde{f}_{i / p}\left(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{i / j}\left(x / \hat{x}, b_{T} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) f_{j / p}\left(\hat{x} ; \mu_{b_{*}}\right)+O\left(\left(m b_{*}\left(b_{T}\right)\right)^{p}\right) . \tag{4.30}
\end{equation*}
$$

Matching with collinear PDFs

$$
\begin{equation*}
\tilde{f}_{i / p}\left(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{i / j}\left(x / \hat{x}, b_{T} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) f_{j / p}\left(\hat{x} ; \mu_{b_{*}}\right)+O\left(\left(m b_{*}\left(b_{T}\right)\right)^{p}\right) . \tag{4.30}
\end{equation*}
$$

Matching with collinear PDFs

$$
\begin{equation*}
\tilde{f}_{i / p}\left(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}\right)=\sum_{j} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{i / j}\left(x / \hat{x}, b_{T} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) f_{j / p}\left(\hat{x} ; \mu_{b_{*}}\right)+O\left(\left(m b_{*}\left(b_{T}\right)\right)^{p}\right) . \tag{4.30}
\end{equation*}
$$

The leading high-transverse momentum part is just the "tail" of the leading low-transverse-momentum part

Ingredients and accuracy

Accuracy	H and C	K and γ_{F}	γ_{K}	PDF and α_{s} evolution
LL	0	-	1	-
NLL	0	1	2	LO
NLL $^{\prime}$	1	1	2	NLO
NNLL $^{\prime}$	1	2	3	NLO
NNLL $^{\prime}$	2	2	3	NNLO
N^{3} LL	2	3	4	NNLO

