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Plan of the lectures

✓Review the idea of structure functions for DIS and introduce them for semi-
inclusive DIS


✓Introduce the idea of quark-quark correlation functions 


✓Parametrize correlation functions in terms of PDFs or Transverse Momentum 
Distributions (TMDs)


✓Obtain the expression of structure functions for semi-inclusive DIS in terms of 
TMDs


• Discuss concept of TMD factorization and TMD evolution


• Discuss a bit of phenomenology
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Final formula for hadronic tensor
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Quark-quark correlation functions
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Gauge link



Need of a gauge link
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Origin of gauge link
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Figure 4.2. Examples of graphs contributing to the gauge link.

The formula for the hadronic tensor closely resembles the one we obtained for inclusive DIS, but
now with the unintegrated correlation function, i.e.

2MWµν(q, P, S , Ph) = 2 Tr
(

Φ(xB, pjT , S ) γµ γ+ γν
)

. (4.13)

Let’s take a look at the first diagram of Fig. 4.2 . We could write it as
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where Φα
A
is made explicit, the l− integrations is performed. In the expression after the second

equal sign, it is understood that p+ = x P+.
The quark propagator reads explicitly

i /k −/l + m

(k − l)2 − m2 + iε ≈ i
(/k + m) − γ− l+ −/lT

−2 l+ k− − (kT − lT )2 − m2 + iε
. (4.17)

In the eikonal approximation, we took into consideration only the term k−γ+ in the numerator.
Less obvious is the fact that there is another contribution, namely from the /lT term, which turn out
to be present only at l+ = 0. Let’s start first from the first kind of contribution. We approximate
then the propagator with the standard eikonal propagator, see Eq. (3.12)

i /k −/l + m

(k − l)2 − m2 + iε ≈
i
2
γ+

−l+ + iε . (4.18)

Ji, Yuan, PLB 543 (02);  Belitsky, Ji, Yuan, NPB656 (03)
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Less obvious is the fact that there is another contribution, namely from the /lT term, which turn out
to be present only at l+ = 0. Let’s start first from the first kind of contribution. We approximate
then the propagator with the standard eikonal propagator, see Eq. (3.12)
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The formula for the hadronic tensor closely resembles the one we obtained for inclusive DIS, but
now with the unintegrated correlation function, i.e.

2MWµν(q, P, S , Ph) = 2 Tr
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Φ(xB, pjT , S ) γµ γ+ γν
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Less obvious is the fact that there is another contribution, namely from the /lT term, which turn out
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where Φα
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is made explicit, the l− integrations is performed. In the expression after the second
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In the eikonal approximation, we took into consideration only the term k−γ+ in the numerator.
Less obvious is the fact that there is another contribution, namely from the /lT term, which turn out
to be present only at l+ = 0. Let’s start first from the first kind of contribution. We approximate
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where Φα
A
is made explicit, the l− integrations is performed. In the expression after the second

equal sign, it is understood that p+ = x P+.
The quark propagator reads explicitly
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(k − l)2 − m2 + iε ≈ i
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−2 l+ k− − (kT − lT )2 − m2 + iε
. (4.17)

In the eikonal approximation, we took into consideration only the term k−γ+ in the numerator.
Less obvious is the fact that there is another contribution, namely from the /lT term, which turn out
to be present only at l+ = 0. Let’s start first from the first kind of contribution. We approximate
then the propagator with the standard eikonal propagator, see Eq. (3.12)

i /k −/l + m

(k − l)2 − m2 + iε ≈
i
2
γ+

−l+ + iε . (4.18)

Ji, Yuan, PLB 543 (02);  Belitsky, Ji, Yuan, NPB656 (03)

2MW (a)
µ⌅ ⇥

�
d4l

�
d4⇤

(2⇧)4
eil·(⇥�⇧)⇤P, S|⌃(0)�µ�+��

k/� l/

(k � l)2 + i⇥
�⌅gA�(⇤)⌃(⌅)|P, S⌅

i
k/� l/

(k � l)2 + i⇥
⇥ i

k��+

�2l+k� + i⇥
⇥ i

2
�+

�l+ + i⇥

2MW (a)
µ⇤ ⇥

⇥
d⇤�

2⇧

⇥
dl+eil+(���⌅�) ⇤P, S|⌃(0)�µ�+ ���+

2
�⇤(ig)

A+(⇤)
�l+ + i⇥

⌃(⌅)|P, S⌅
���� �+ = ⌅+,

�T = ⇥T

eikonal approximation

2MW (a)
µ⇤ ⇥ ⇤P, S|⌅(0) �µ�+ �⇤ (�ig)

⇥ ⌅�

⇥�
d⇥� A+(⇥) ⌅(⇤)|P, S⌅

���� �+ = ⌅+

�T = ⇥T



Origin of gauge link

7

The gauge link 45

P

k − Pk − l − P

q

l

k − l

p − l

k

P

k − Pk − l − P

q

p − l − l′ l l′

(a) (b)

Figure 4.2. Examples of graphs contributing to the gauge link.

The formula for the hadronic tensor closely resembles the one we obtained for inclusive DIS, but
now with the unintegrated correlation function, i.e.

2MWµν(q, P, S , Ph) = 2 Tr
(

Φ(xB, pjT , S ) γµ γ+ γν
)

. (4.13)

Let’s take a look at the first diagram of Fig. 4.2 . We could write it as

2MW (a)µν ∝
∫

dp− d4l Tr
(

γα
/k −/l + m

(k − l)2 − m2 + iε γνΦ
α
A(p, p − l)γµ (/k + m)

)

∣

∣

∣

∣

∣

k=p+q

(4.14)

where we introduced

ΦαAi j(p, p − l) =
∫ d4ξ
(2π)4

d4η
(2π)4 e

ip·ξ eil·(η−ξ)〈P, S ψ̄̄i(0) gAα(η)ψ j(ξ) P, S
〉 (4.15)

so that

2MW (a)µν ∝
∫

dp− dl+ d2 lT
∫ d4ξ
(2π)4

dη− d2ηT
(2π)3 eip·ξei l·(η−ξ)

× 〈P, S |ψ(0)γµγ+γα
/k −/l + m

(k − l)2 − m2 + iε γνgA
α(η)ψ(ξ)|P, S 〉

∣

∣

∣

∣

∣

∣

η+=0
,

(4.16)

where Φα
A
is made explicit, the l− integrations is performed. In the expression after the second
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In the eikonal approximation, we took into consideration only the term k−γ+ in the numerator.
Less obvious is the fact that there is another contribution, namely from the /lT term, which turn out
to be present only at l+ = 0. Let’s start first from the first kind of contribution. We approximate
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Figure 13. Feynman rules involving eikonal lines along the direction v. The colour indices r and
s refer to either the fundamental or the adjoint representation, whereas j and k are colour triplet
and a, b and c are colour octet indices.

−i
(
qn gjµ − pjnµ

)
δba i

(
qn gjµ − pjnµ

)
δab

µ, a µ, a

b b

p p

q qj j

Figure 14. Feynman rule corresponding to the operator in a gluon distribution when an eikonal line
along n is attached to the gluon. The Lorentz index j is transverse w.r.t. the lightlike direction n.
The rule for the graph without the eikonal line is obtained by setting p = q.

The Feynman rules for the propagators and couplings involving eikonal lines are given

in figure 13. They arise from the expansion of Wilson line operators, given by (3.5) and

its analogue for the adjoint representation. We use there the notation of [27], where open

and closed circles at the ends of eikonal lines (in addition to arrows on and above them)

were introduced as a way to make the correspondence between graphs and mathematical

expressions unique. Let us briefly explain this.

First of all, the full circle indicates the (relative) past and the open circle the (relative)

future time direction when considering the path of the Wilson line in space-time. This

– 96 –

Buffing, Diehl, Kasemets, arxiv:1708.03528
past future

https://arxiv.org/abs/1708.03528


Gauge link in collinear PDFs

10

�(x, S) �
�
P, S ⇥̄̄(0)U[0,��] U[��,��]⇥(�) P, S

⇥



Gauge link in collinear PDFs

10

��

�T

�(x, S) �
�
P, S ⇥̄̄(0)U[0,��] U[��,��]⇥(�) P, S

⇥



Gauge link in collinear PDFs

10

��

�T

��

�T

�(x, S) �
�
P, S ⇥̄̄(0)U[0,��] U[��,��]⇥(�) P, S

⇥



Gauge link for TMDs

11

�ij(x, pT ) =
⇥

d��d2�T

8⇥3
eip·��P |⇤̄j(0)U[0,�]⇤i(�)|P ⇥

����
�+=0



Gauge link for TMDs

11

��

�T

�ij(x, pT ) =
⇥

d��d2�T

8⇥3
eip·��P |⇤̄j(0)U[0,�]⇤i(�)|P ⇥

����
�+=0

SIDIS U[+]



Key point (graphically)

12



Key point (graphically)

12



Key point (graphically)

13



Key point (graphically)

13



Gauge links in Drell-Yan

14
Collins, PLB 536 (02)

k − l k

−k

k − l

2MW (a)
µ⌅ ⇥

�
d4l

�
d4⇤

(2⇧)4
eil·(⇥�⇧)⇤P, S|⌃(0)�µ�+��

k/� l/

(k � l)2 + i⇥
�⌅gA�(⇤)⌃(⌅)|P, S⌅



Gauge links in Drell-Yan

14
Collins, PLB 536 (02)

k − l k

−k

k − l

2MW (a)
µ⌅ ⇥

�
d4l

�
d4⇤

(2⇧)4
eil·(⇥�⇧)⇤P, S|⌃(0)�µ�+��

k/� l/

(k � l)2 + i⇥
�⌅gA�(⇤)⌃(⌅)|P, S⌅

l



Gauge links in Drell-Yan

14
Collins, PLB 536 (02)

i
k/� l/ + m

(k � l)2 �m2 + i⇥
⇥ i

�(�k)��+

2l+(�k)� + i⇥
⇥ i

2
�+

�l+�i⇥

k − l k

−k

k − l

2MW (a)
µ⌅ ⇥

�
d4l

�
d4⇤

(2⇧)4
eil·(⇥�⇧)⇤P, S|⌃(0)�µ�+��

k/� l/

(k � l)2 + i⇥
�⌅gA�(⇤)⌃(⌅)|P, S⌅

l



Gauge links in Drell-Yan

14
Collins, PLB 536 (02)

i
k/� l/ + m

(k � l)2 �m2 + i⇥
⇥ i

�(�k)��+

2l+(�k)� + i⇥
⇥ i

2
�+

�l+�i⇥

k − l k

−k

k − l

2MW (a)
µ⌅ ⇥

�
d4l

�
d4⇤

(2⇧)4
eil·(⇥�⇧)⇤P, S|⌃(0)�µ�+��

k/� l/

(k � l)2 + i⇥
�⌅gA�(⇤)⌃(⌅)|P, S⌅

l



Gauge links in Drell-Yan

14
Collins, PLB 536 (02)

2MW (a)
µ⇤ ⇥ ⇤P, S|⌅(0) �µ�+ �⇤ (�ig)

⇥ ⌅�

�⇥�
d⇥� A+(⇥) ⌅(⇤)|P, S⌅

�����
�+=0; �T =⇥T

i
k/� l/ + m

(k � l)2 �m2 + i⇥
⇥ i

�(�k)��+

2l+(�k)� + i⇥
⇥ i

2
�+

�l+�i⇥

k − l k

−k

k − l

2MW (a)
µ⌅ ⇥

�
d4l

�
d4⇤

(2⇧)4
eil·(⇥�⇧)⇤P, S|⌃(0)�µ�+��

k/� l/

(k � l)2 + i⇥
�⌅gA�(⇤)⌃(⌅)|P, S⌅

l



Gauge link for TMDs

15

�ij(x, pT ) =
⇥

d��d2�T

8⇥3
eip·��P |⇤̄j(0)U[0,�]⇤i(�)|P ⇥

����
�+=0



Gauge link for TMDs

15

��

�T

�ij(x, pT ) =
⇥

d��d2�T

8⇥3
eip·��P |⇤̄j(0)U[0,�]⇤i(�)|P ⇥

����
�+=0

SIDIS U[+]



Gauge link for TMDs

15

��

�T

�ij(x, pT ) =
⇥

d��d2�T

8⇥3
eip·��P |⇤̄j(0)U[0,�]⇤i(�)|P ⇥

����
�+=0

��

�T

SIDIS

Drell-Yan

U[+]

U[�]



Gauge link and (naive) T-odd functions

• Time reversal determines whether the gauge link goes to + or − infinity


• In the collinear case, where the gauge link turns out to be the same, this means 
that a certain class of PDFs (called “T-odd” or “naive T-odd”) has to vanish


• In the TMD case, however, the gauge links are different and this means that it is 
possible to have T-odd functions (Boer-Mulders and Sivers)

16



Key point

• Gauge links have a staple-like shape


• Different processes have different gauge links


• Gauge links are there also for collinear PDFs, but they are “trivial” and universal


• The difference in the gauge links makes it possible to have T-odd TMDs

17



Basic ideas about factorization
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Figure 3.1: (a) Graphical structure corresponding to leading regions in Drell-Yan scattering, before
factorization. Green gluons are collinear to lines in the �-blob, red gluons are collinear to lines in the
⌫-blob, and blue gluons have nearly zero momentum (soft). (b) Separation into hard, soft, and collinear
parts after approximations and Ward identities—see Sec. 3.2.5.

to nonperturbative hadron structure. The basic steps for deriving the factorization formula
in the large & limit, both for the Drell-Yan example and for those other processes for which
factorization theorems exist, can be summarized according to the following steps:
3.2.1 Region analysis

For an arbitrary Feynman graph contributing to a specific process, certain configurations of
internal momentum for internal parton lines dominate in the asymptotically large & limit. The
first step, then, is to identify and catalogue all these “leading regions.” A systematic approach
to region analysis was developed by Libby and Sterman [219], (also see [11, Chapter 5]), and
its key ideas are that: i.) there is a correspondence between mass divergences in Feynman
graphs and their & ! 1 asymptotes and ii.) the mass divergences correspond to surfaces in
the higher dimensional space of the momentum of all lines in a general graph that are trapped
between propagator poles. These “pinched singular surfaces” (PSSs) can not be deformed
away from the poles that trap them. In the Libby-Sterman approach, the identification and
characterization of PSSs becomes a largely geometric problem, and they are often summarized
in graphical form as in Fig. 3.1(a) for Drell-Yan scattering at small transverse momentum for
the produced lepton pair. The � blobs contain lines that are off shell by at least order &, while
the � and ⌫ blobs contain parton lines that are collinear to one or the other incoming hadron
momentum. The ( blob represents lines with nearly zero momenta in the center-of-mass
system. The gluon lines shown attaching � and ⌫ to � represent gluons collinear to � and
⌫ respectively and attaching to the interior lines of �. The gluon lines attaching ( to � and
⌫ are soft, having nearly zero momentum in the center-of-mass system. To summarize, an
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98, 99, 100, 101, 102, 103, 106], the singular cross section can be written as
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In Eqs. (2.28) and (2.29) we use the notation 5 = 51 and 5̃ = 5̃1 for the unpolarized TMD PDF,
and this should be understood as the case in what follows, unless otherwise indicated. We will
start by describing the most important ingredients common to Eqs. (2.28,2.29a,2.29b), and then
return to comparisons between these three equivalent expressions for the cross section. In
both Eqs. (2.28) and (2.29), the factorization is written in Fourier space, with b) being Fourier-
conjugate to the measured transverse momentum q) , and in both cases the hard function �

88̄

encodes virtual corrections to the underlying hard process @8@8̄
! ✏⇤// ! ;

+
;
�, with the

quark flavors 8 , 8̄ being summed over. Here 8 is a quark flavor and 8̄ is the charge conjugate
of 8, since other flavor combinations and cases involving gluons occur only in d�. . Note that,
whenever possible, we will neglect target mass corrections from <

2
%
⌧ &

2, together with other
⇤2

QCD/&2 power corrections.
Compared to our parton model discussion in Eq. (2.6), the TMD PDFs in Eq. (2.29) have

dependence on two additional variables, the renormalization scale ⇠ and Collins-Soper scales
✓0 ,1 [88, 17]. These dependences arise from defining the renormalized TMD PDFs in quantum
field theory, while being careful about the treatment of rapidity dependence. A more detailed
discussion of the relation between bare and renormalized TMD PDFs is given below in Sec. 2.3,
while methods of handling rapidity divergences that appear in intermediate steps of the TMD
PDF definitions, and which are related to the appearance of ✓0 ,1 , are treated in Sec. 2.4. The
dependences of the TMD PDFs on both ⇠ and ✓ are governed by evolution equations, which
are discussed in Sec. 4. In particular this enables a TMD PDF 5

8/�(G , b) , ⇠0, ✓0) to be evolved
from initial scales ⇠0 and ✓0 to final scales ⇠ and ✓, yielding 5

8/�(G , b) , ⇠, ✓). In this context the
scales appearing in Eq. (2.29) can be interpreted as the final scales after this evolution. Taking
a ⇠ ⇠ & then minimizes large logarithms in �

88̄
(& , ⇠). Likewise, the final Collins-Soper scales

✓0 ,1 are given by
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, (2.30)

such that their product yields the invariant mass of the hard process,

✓0✓1 = (2G0G1%+
�
%
�
⌫
)2 = &

4
. (2.31)

Here 2%+
�
%
�
⌫
⇡ (%�+%⌫)2 = B is the center-of-mass energy of the proton-proton collision, while

.� and .⌫ are the rapidities of the two protons (which are equal in the center-of-momentum
frame, .� = .⌫ = H%). The rapidity variable H= in Eq. (2.30) controls an additional scheme
dependence which cancels between the two TMD PDFs. While this allows one to derive
evolution equations with respect to ✓0 ,1 , there does not appear to be a great benefit from
exploiting the H= dependence otherwise, and often the simplest choice H= = 0 is adopted.



Factorization for SIDIS

21

q

P

h

FUU,T (x, z, P
2
h?, Q

2) = C0⇥
f1D1

⇤

= H(Q2
, µ

2)

Z
d
2pT d

2kT d
2lT �

(2)
�
pT � kT + lT � P h?/z

�

x

X

a

e
2
a f

a
1 (x, p

2
T , µ

2
, ⇣)Da

1(z, k
2
T , µ

2
, ⇣h)U(l2T , µ

2
, ⇣⇣h)

<latexit sha1_base64="UL4MjpzU9cjJV08MzYei/vBSRmk="></latexit>



Factorization for SIDIS

21

unsubtracted TMD PDF
unsubtracted TMD FF

Soft factorHard part

q

P

h

FUU,T (x, z, P
2
h?, Q

2) = C0⇥
f1D1

⇤

= H(Q2
, µ

2)

Z
d
2pT d

2kT d
2lT �

(2)
�
pT � kT + lT � P h?/z

�

x

X

a

e
2
a f

a
1 (x, p

2
T , µ

2
, ⇣)Da

1(z, k
2
T , µ

2
, ⇣h)U(l2T , µ

2
, ⇣⇣h)

<latexit sha1_base64="UL4MjpzU9cjJV08MzYei/vBSRmk="></latexit>



Factorization for SIDIS

22

q

P

h

FUU,T (x, z,P
2
hT , Q

2)

= x
X

a

H
q
UU,T (Q

2, µ)

Z
dbT bTJ0(bT |P h?|)f̂

q
1

�
x, z2b2?;µ, ⇣

�
D̂a!h

1

�
z, b2?;µ, ⇣h

�

<latexit sha1_base64="3WBX2FzRGi6EXVhvHDnJAFx6lHg="></latexit>



Factorization for SIDIS

22

q

P

h

FUU,T (x, z,P
2
hT , Q

2)

= x
X

a

H
q
UU,T (Q

2, µ)

Z
dbT bTJ0(bT |P h?|)f̂

q
1

�
x, z2b2?;µ, ⇣

�
D̂a!h

1

�
z, b2?;µ, ⇣h

�

<latexit sha1_base64="3WBX2FzRGi6EXVhvHDnJAFx6lHg="></latexit>

renormalized TMD PDF
renormalized TMD FF



Key point

The parton-model results are still valid, but we the additional 
dependence on two scales and the addition of a hard factor

23



One loop analysis (quark-in-quark case)
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Figure2.3:One-loopcontributionstothesoftfunction,withmirrordiagramsobtainedbyaleft-right
swapoftheexchangedgluonnotshown.ThedoublelinesdenotetheWilsonlinesfromthetransverse
positions0Tandb)stretchingtolight-coneinfinityasindicated.Theredlinedenotestheon-shellcut.
Diagram(a)isscalelessandvanishesinpuredimensionalregularization.

forthecanonicallogarithmencodingtheb)-dependence,andintroducednotationforthe
quark-quarkone-loopsplittingfunctionwhichreads

%@@(G)=
1+G

2

1�G

.(2.72)

Eq.(2.70)isourdesiredfinalresult:thedivergenceasG!1isregulatedthroughtheplus
distribution,withthedivergencenowmanifestasapolein1/�.Inaddition,itcontainsa
1/&polefromthe:)!0regionoftheintegralinEq.(2.64).Notethatthedivergenceinthe
firstlineinEq.(2.70)isproportionaltothequark-to-quarksplittingfunction%@@.Infact,one
encounterstheidenticaldivergenceforthecollinearPDFitself,illustratingtheuniversality
fromthecollinearlimitofQCD.

ThebareresultinEq.(2.70)dependssomewhatontheemployedrapidityregulator,andis
notuniversal.Sothatresultswithotherregulatorscanbeeasiliycompared,wecollectexplicit
bareresultsforallregulatorsdiscussedaboveinSec.2.4.1inappendixD.

Softfunction.Letusnowstudythecorrespondingone-loopcalculationofthesoftfunction.
TherelevantdiagramsareshowninFig.2.3,uptomirrordiagrams,andcanbeevaluatedin
thesamefashionasshownexplicitlyfortheunsubtractedTMDPDF.Asbefore,wefirstgive
thegenericbareresultwithoutanyrapidityregulator,
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SincetheresultfromFig.2.3(a)isscaleless,hereweshowonlythecontributionfromFig.2.3(b)
anditsmirrorimage.Withtheexpressioninthefirstlinewecandothe:

+integralbycontours,
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads

%@@(G) =
1 + G

2

1 � G

. (2.72)

Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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Figure 2.2: One-loop contribution to the unsubtracted quark-TMD PDF. The ⌦ denote the two quark
fields, the double line the staple shaped Wilson lines connecting the quark fields, and the red line
the on-shell cut. The diagrams (b)–(d) have mirror diagrams that are not explicitly shown. In pure
dimensional regularization, the virtual diagrams (c) and (d) are scaleless and vanish.

expressions for the diagrams in Fig. 2.2:
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Note that the quark field sitting at 1⇠ induces a phase 4
8@·1 , where @⇠ is the momentum flowing

out of the right vertex ⌦. We have not given diagrams (c) and (d), as they vanish in dimensional
regularization, i.e. they involve scaleless integrals of the type Ø d

3
: 5 (:2) = 0 in dimensional

regularization. The overall factor of 2 in M1 arises from the mirror diagram.
To proceed, we evaluate the 1� integral as
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where we used that 1+ = ?� = 0, such that the remaining phase arises purely from the
transverse momentum. This result has a simple interpretation: the emitted gluon carries
away the longitudinal momentum :+ = (1 � G)?+, such that the leftover momentum G?+ is
absorbed by the quark field. In other words, the parton participating in the hard interaction
will carry the momentum fraction G of the external parent hadron.

Using light-cone coordinates, the integration measure becomes d
3
: = d:+d:�d

3�2k) ,
whose :+ integral is already fixed by Eq. (2.59). Performing the standard Dirac algebra in the
numerators in Eq. (2.57), we obtain
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Figure2.2:One-loopcontributiontotheunsubtractedquark-TMDPDF.The⌦denotethetwoquark
fields,thedoublelinethestapleshapedWilsonlinesconnectingthequarkfields,andtheredline
theon-shellcut.Thediagrams(b)–(d)havemirrordiagramsthatarenotexplicitlyshown.Inpure
dimensionalregularization,thevirtualdiagrams(c)and(d)arescalelessandvanish.
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Notethatthequarkfieldsittingat1⇠inducesaphase4
8@·1,where@⇠isthemomentumflowing

outoftherightvertex⌦.Wehavenotgivendiagrams(c)and(d),astheyvanishindimensional
regularization,i.e.theyinvolvescalelessintegralsofthetypeØd
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whereweusedthat1+=?�=0,suchthattheremainingphasearisespurelyfromthe
transversemomentum.Thisresulthasasimpleinterpretation:theemittedgluoncarries
awaythelongitudinalmomentum:+=(1�G)?+,suchthattheleftovermomentumG?+is
absorbedbythequarkfield.Inotherwords,thepartonparticipatinginthehardinteraction
willcarrythemomentumfractionGoftheexternalparenthadron.

Usinglight-conecoordinates,theintegrationmeasurebecomesd
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whose:+integralisalreadyfixedbyEq.(2.59).PerformingthestandardDiracalgebrainthe
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Figure2.2:One-loopcontributiontotheunsubtractedquark-TMDPDF.The⌦denotethetwoquark
fields,thedoublelinethestapleshapedWilsonlinesconnectingthequarkfields,andtheredline
theon-shellcut.Thediagrams(b)–(d)havemirrordiagramsthatarenotexplicitlyshown.Inpure
dimensionalregularization,thevirtualdiagrams(c)and(d)arescalelessandvanish.
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whereweusedthat1+=?�=0,suchthattheremainingphasearisespurelyfromthe
transversemomentum.Thisresulthasasimpleinterpretation:theemittedgluoncarries
awaythelongitudinalmomentum:+=(1�G)?+,suchthattheleftovermomentumG?+is
absorbedbythequarkfield.Inotherwords,thepartonparticipatinginthehardinteraction
willcarrythemomentumfractionGoftheexternalparenthadron.
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Figure2.2:One-loopcontributiontotheunsubtractedquark-TMDPDF.The⌦denotethetwoquark
fields,thedoublelinethestapleshapedWilsonlinesconnectingthequarkfields,andtheredline
theon-shellcut.Thediagrams(b)–(d)havemirrordiagramsthatarenotexplicitlyshown.Inpure
dimensionalregularization,thevirtualdiagrams(c)and(d)arescalelessandvanish.

expressionsforthediagramsinFig.2.2:
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Notethatthequarkfieldsittingat1⇠inducesaphase4
8@·1,where@⇠isthemomentumflowing

outoftherightvertex⌦.Wehavenotgivendiagrams(c)and(d),astheyvanishindimensional
regularization,i.e.theyinvolvescalelessintegralsofthetypeØd

3
:5(:2)=0indimensional

regularization.Theoverallfactorof2inM1arisesfromthemirrordiagram.
Toproceed,weevaluatethe1�integralas
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whereweusedthat1+=?�=0,suchthattheremainingphasearisespurelyfromthe
transversemomentum.Thisresulthasasimpleinterpretation:theemittedgluoncarries
awaythelongitudinalmomentum:+=(1�G)?+,suchthattheleftovermomentumG?+is
absorbedbythequarkfield.Inotherwords,thepartonparticipatinginthehardinteraction
willcarrythemomentumfractionGoftheexternalparenthadron.

Usinglight-conecoordinates,theintegrationmeasurebecomesd
3
:=d:+d:�d

3�2k),
whose:+integralisalreadyfixedbyEq.(2.59).PerformingthestandardDiracalgebrainthe
numeratorsinEq.(2.57),weobtain
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Figure 2.2: One-loop contribution to the unsubtracted quark-TMD PDF. The ⌦ denote the two quark
fields, the double line the staple shaped Wilson lines connecting the quark fields, and the red line
the on-shell cut. The diagrams (b)–(d) have mirror diagrams that are not explicitly shown. In pure
dimensional regularization, the virtual diagrams (c) and (d) are scaleless and vanish.

expressions for the diagrams in Fig. 2.2:
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Note that the quark field sitting at 1⇠ induces a phase 4
8@·1 , where @

⇠ is the momentum flowing
out of the right vertex ⌦. We have not given diagrams (c) and (d), as they vanish in dimensional
regularization, i.e. they involve scaleless integrals of the type

Ø
d3

: 5 (:2) = 0 in dimensional
regularization. The overall factor of 2 in M1 arises from the mirror diagram.

To proceed, we evaluate the 1
� integral as
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+]4 8b) ·k)

, (2.59)

where we used that 1
+ = ?

� = 0, such that the remaining phase arises purely from the
transverse momentum. This result has a simple interpretation: the emitted gluon carries
away the longitudinal momentum :

+ = (1 � G)?+, such that the leftover momentum G?
+ is

absorbed by the quark field. In other words, the parton participating in the hard interaction
will carry the momentum fraction G of the external parent hadron.

Using light-cone coordinates, the integration measure becomes d3
: = d:+d:�d3�2k) ,

whose :
+ integral is already fixed by Eq. (2.59). Performing the standard Dirac algebra in the

numerators in Eq. (2.57), we obtain
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transversemomentum.Thisresulthasasimpleinterpretation:theemittedgluoncarries
awaythelongitudinalmomentum:+=(1�G)?+,suchthattheleftovermomentumG?+is
absorbedbythequarkfield.Inotherwords,thepartonparticipatinginthehardinteraction
willcarrythemomentumfractionGoftheexternalparenthadron.

Usinglight-conecoordinates,theintegrationmeasurebecomesd
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Figure 2.2: One-loop contribution to the unsubtracted quark-TMD PDF. The ⌦ denote the two quark
fields, the double line the staple shaped Wilson lines connecting the quark fields, and the red line
the on-shell cut. The diagrams (b)–(d) have mirror diagrams that are not explicitly shown. In pure
dimensional regularization, the virtual diagrams (c) and (d) are scaleless and vanish.
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Note that the quark field sitting at 1⇠ induces a phase 4
8@·1 , where @

⇠ is the momentum flowing
out of the right vertex ⌦. We have not given diagrams (c) and (d), as they vanish in dimensional
regularization, i.e. they involve scaleless integrals of the type
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: 5 (:2) = 0 in dimensional
regularization. The overall factor of 2 in M1 arises from the mirror diagram.
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where we used that 1
+ = ?

� = 0, such that the remaining phase arises purely from the
transverse momentum. This result has a simple interpretation: the emitted gluon carries
away the longitudinal momentum :

+ = (1 � G)?+, such that the leftover momentum G?
+ is

absorbed by the quark field. In other words, the parton participating in the hard interaction
will carry the momentum fraction G of the external parent hadron.

Using light-cone coordinates, the integration measure becomes d3
: = d:+d:�d3�2k) ,

whose :
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FIG. 8: Graphs that contribute to a violation of generalized TMD-factorization. Other graphs that should be included are
those with all possible attachments of l1 to the k4 and k2 lines, and all possible attachments of l2 to the k3 and k1 lines, and
all Hermitian conjugate graphs. In total there are 16 graphs of this type.

where it was shown that there is no violation of
standard factorization with just one gluon. Hence,
contributions from graphs like Fig. 8 cannot be con-
sistently incorporated into a factorization formula
by modifying Wilson lines in separate correlation
functions. If they give a non-vanishing contribu-
tion, then there is a clear violation of generalized
TMD-factorization.

We will therefore prove that generalized TMD-
factorization, Eq. (32), is violated by showing that the
sum of graphs of the type illustrated in Fig. 8 give a
non-vanishing contribution to a DSA.
First, we note that all graphs of the type shown in

Fig. 8 include the non-zero color factor

TrC
[

tatb
]

TrC
[

tbta
]

= T 2
F (N

2
c − 1). (34)

Next, we must ensure that there is no cancellation be-
tween graphs.

A. Same Side of the Cut

In the sum of graphs like Fig. 8(a), where both gluons
are on the same side of the cut, the eikonal factors give
a total contribution equal to

(

1

−l+1 + iε

)(

1

−l−2 + iε

)

+

(

1

l+1 + iε

)(

1

−l−2 + iε

)

+

+

(

1

−l+1 + iε

)(

1

l−2 + iε

)

+

(

1

l+1 + iε

)(

1

l−2 + iε

)

= −4π2δ(l+1 )δ(l
−
2 ). (35)

Since spin dependence is needed in both H1 and H2 for
a DSA, then there are also two factors corresponding to
Eq. (9) (but with one corresponding to a p2 spectator
attachment). Taking into account both of the resulting

factors of i gives an overall factor of i2 = −1. Combined
with Eq. (35), the relevant factor from extra collinear
gluons is then 4π2δ(l+1 )δ(l

−
2 ). The same result is obtained

from the Hermitian conjugate graphs.

B. Opposite Side of Cut

The sum of graphs with one extra gluon on each side
of the cut, as in Fig. 8(b), works in much the same way.
The eikonal factors give

(

1

−l+1 − iε

)(

1

−l−2 + iε

)

+

(

1

l+1 − iε

)(

1

−l−2 + iε

)

+

+

(

1

−l+1 − iε

)(

1

l−2 + iε

)

+

(

1

l+1 − iε

)(

1

l−2 + iε

)

= 4π2δ(l+1 )δ(l
−
2 ). (36)

For a DSA, there is a factor of i from a factor analogous
to Eq. (9) for the p1-spectator attachment of the gluon
on the left side of the cut and a factor of −i from a
factor analogous to Eq. (11) (but for a gluon attaching
at the p2-spectator) on the right side of the cut, giving an
overall factor of i(−i) = +1. So, combined with Eq. (36)
the relevant factor from extra gluon attachments is again
4π2δ(l+1 )δ(l

−
2 ).

C. Together

Summing all graphs of the type shown in Fig. 8, there-
fore, results in just a single integral. To check it explic-
itly, one can use Eqs. (36) (extracting the overall fac-
tor of i(−i) = 1 that comes with the two spectator at-
tachments) to explicitly calculate the contribution from
graphs with gluons on opposite sides of the cut:

Rogers, Mulders, arXiv:1001.2977
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads

%@@(G) =
1 + G

2

1 � G

. (2.72)

Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,

M( = 262
0⇠�

π
d3

:

(2�)3
4
8b) ·k)

�8
(2:+:� � k2

)
+ 80)

1
(:+ � 80)(�:� + 80)

= 262
0⇠�

π
d3

:

(2�)3
4
8b) ·k) (2�)⇣+(:2) 1

:
+
:
�

=
6

2
0⇠�

�

π
d2�2&k)

(2�)3�2
4
8b) ·k)

:
2
)

π 1

0

d:�
:
� . (2.73)

Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,



Soft factor at one loop

27

TMD Handbook 50

0T bT

nana

nb nb

(a)

0T bT

nana

nb nb

(b)

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads

%@@(G) =
1 + G

2

1 � G

. (2.72)

Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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The remaining integral over :� can be evaluated using the residue theorem,
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From the first line, we see that if G and 1� G have different signs, then the residues of :� will lie
on the same complex half plane, and one can deform the :

� contour into the other half plane
such that the integral vanishes. (Here, the signs of the Feynman 80 prescription are crucial.)
Hence, the only physical contribution arises if 0 < G < 1, the expected physical range of the
momentum fraction. We then choose the residue at :� = k2
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/(2:+) > 0, which is equivalent to

choosing :
2 = 0. Thus, we can interpret this choice as setting the gluon in Fig. 2.2 on shell. In

fact, we could have started with this choice right away by using the Cutkosky rule [120]
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Our more exhaustive derivation shows how this constraint naturally arises from the definition
of the unsubtracted TMD PDF.

Combining the two matrix elements in Eq. (2.60) with Eq. (2.61), we obtain the one-loop
contribution to the bare unsubtracted quark TMD PDF as
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To evaluate the remaining k) integral, we have to fix how we want to treat k) and b) in 2� 2&
dimensions. There is no unique choice, but ultimately every choice leads to equivalent TMD
PDFs. Following [106] we extend b) = (1) , 0, Æ0�2&) and k) = :)(cos, sin, Æ0�2&), such that
the phase only picks out the purely two-dimensional piece. This yields
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where ⌦= = 2�(=+1)/2/�[(= + 1)/2] is the area of a unit =-sphere. Thus, we finally arrive at
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where we also replaced the bare by the renormalized coupling in the MS scheme,
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads

%@@(G) =
1 + G

2
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. (2.72)

Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,

TMD Handbook 50

0T bT

nana

nb nb

(a)

0T bT

nana

nb nb

(b)

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads

%@@(G) =
1 + G

2

1 � G

. (2.72)

Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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From the first line, we see that if G and 1� G have different signs, then the residues of :� will lie
on the same complex half plane, and one can deform the :

� contour into the other half plane
such that the integral vanishes. (Here, the signs of the Feynman 80 prescription are crucial.)
Hence, the only physical contribution arises if 0 < G < 1, the expected physical range of the
momentum fraction. We then choose the residue at :� = k2
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/(2:+) > 0, which is equivalent to
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Our more exhaustive derivation shows how this constraint naturally arises from the definition
of the unsubtracted TMD PDF.

Combining the two matrix elements in Eq. (2.60) with Eq. (2.61), we obtain the one-loop
contribution to the bare unsubtracted quark TMD PDF as
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To evaluate the remaining k) integral, we have to fix how we want to treat k) and b) in 2� 2&
dimensions. There is no unique choice, but ultimately every choice leads to equivalent TMD
PDFs. Following [106] we extend b) = (1) , 0, Æ0�2&) and k) = :)(cos, sin, Æ0�2&), such that
the phase only picks out the purely two-dimensional piece. This yields
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where we also replaced the bare by the renormalized coupling in the MS scheme,
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads

%@@(G) =
1 + G

2

1 � G

. (2.72)

Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :
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From the first line, we see that if G and 1� G have different signs, then the residues of :� will lie
on the same complex half plane, and one can deform the :

� contour into the other half plane
such that the integral vanishes. (Here, the signs of the Feynman 80 prescription are crucial.)
Hence, the only physical contribution arises if 0 < G < 1, the expected physical range of the
momentum fraction. We then choose the residue at :� = k2
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Our more exhaustive derivation shows how this constraint naturally arises from the definition
of the unsubtracted TMD PDF.

Combining the two matrix elements in Eq. (2.60) with Eq. (2.61), we obtain the one-loop
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To evaluate the remaining k) integral, we have to fix how we want to treat k) and b) in 2� 2&
dimensions. There is no unique choice, but ultimately every choice leads to equivalent TMD
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where we also replaced the bare by the renormalized coupling in the MS scheme,
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads

%@@(G) =
1 + G

2

1 � G

. (2.72)

Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
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not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :
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The remaining integral over :� can be evaluated using the residue theorem,
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From the first line, we see that if G and 1� G have different signs, then the residues of :� will lie
on the same complex half plane, and one can deform the :

� contour into the other half plane
such that the integral vanishes. (Here, the signs of the Feynman 80 prescription are crucial.)
Hence, the only physical contribution arises if 0 < G < 1, the expected physical range of the
momentum fraction. We then choose the residue at :� = k2

)
/(2:+) > 0, which is equivalent to

choosing :
2 = 0. Thus, we can interpret this choice as setting the gluon in Fig. 2.2 on shell. In

fact, we could have started with this choice right away by using the Cutkosky rule [120]
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Our more exhaustive derivation shows how this constraint naturally arises from the definition
of the unsubtracted TMD PDF.

Combining the two matrix elements in Eq. (2.60) with Eq. (2.61), we obtain the one-loop
contribution to the bare unsubtracted quark TMD PDF as
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To evaluate the remaining k) integral, we have to fix how we want to treat k) and b) in 2� 2&
dimensions. There is no unique choice, but ultimately every choice leads to equivalent TMD
PDFs. Following [106] we extend b) = (1) , 0, Æ0�2&) and k) = :)(cos, sin, Æ0�2&), such that
the phase only picks out the purely two-dimensional piece. This yields
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where ⌦= = 2�(=+1)/2/�[(= + 1)/2] is the area of a unit =-sphere. Thus, we finally arrive at
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where we also replaced the bare by the renormalized coupling in the MS scheme,
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.

for the canonical logarithm encoding the b)-dependence, and introduced notation for the
quark-quark one-loop splitting function which reads
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
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The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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The remaining integral over :� can be evaluated using the residue theorem,
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From the first line, we see that if G and 1� G have different signs, then the residues of :� will lie
on the same complex half plane, and one can deform the :

� contour into the other half plane
such that the integral vanishes. (Here, the signs of the Feynman 80 prescription are crucial.)
Hence, the only physical contribution arises if 0 < G < 1, the expected physical range of the
momentum fraction. We then choose the residue at :� = k2

)
/(2:+) > 0, which is equivalent to

choosing :
2 = 0. Thus, we can interpret this choice as setting the gluon in Fig. 2.2 on shell. In

fact, we could have started with this choice right away by using the Cutkosky rule [120]
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Our more exhaustive derivation shows how this constraint naturally arises from the definition
of the unsubtracted TMD PDF.

Combining the two matrix elements in Eq. (2.60) with Eq. (2.61), we obtain the one-loop
contribution to the bare unsubtracted quark TMD PDF as
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To evaluate the remaining k) integral, we have to fix how we want to treat k) and b) in 2� 2&
dimensions. There is no unique choice, but ultimately every choice leads to equivalent TMD
PDFs. Following [106] we extend b) = (1) , 0, Æ0�2&) and k) = :)(cos, sin, Æ0�2&), such that
the phase only picks out the purely two-dimensional piece. This yields
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where ⌦= = 2�(=+1)/2/�[(= + 1)/2] is the area of a unit =-sphere. Thus, we finally arrive at
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where we also replaced the bare by the renormalized coupling in the MS scheme,
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Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right
swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse
positions 0T and b) stretching to light-cone infinity as indicated. The red line denotes the on-shell cut.
Diagram (a) is scaleless and vanishes in pure dimensional regularization.
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Eq. (2.70) is our desired final result: the divergence as G ! 1 is regulated through the plus
distribution, with the divergence now manifest as a pole in 1/�. In addition, it contains a
1/& pole from the :) ! 0 region of the integral in Eq. (2.64). Note that the divergence in the
first line in Eq. (2.70) is proportional to the quark-to-quark splitting function %@@ . In fact, one
encounters the identical divergence for the collinear PDF itself, illustrating the universality
from the collinear limit of QCD.

The bare result in Eq. (2.70) depends somewhat on the employed rapidity regulator, and is
not universal. So that results with other regulators can be easiliy compared, we collect explicit
bare results for all regulators discussed above in Sec. 2.4.1 in appendix D.

Soft function. Let us now study the corresponding one-loop calculation of the soft function.
The relevant diagrams are shown in Fig. 2.3, up to mirror diagrams, and can be evaluated in
the same fashion as shown explicitly for the unsubtracted TMD PDF. As before, we first give
the generic bare result without any rapidity regulator,
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Since the result from Fig. 2.3(a) is scaleless, here we show only the contribution from Fig. 2.3(b)
and its mirror image. With the expression in the first line we can do the :

+ integral by contours,
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fixing :
+ = k2

)
/(2:�) � 80 with :

� > 0. This gives an equivalent result to the expression in the
second line, which uses Eq. (2.62) to express the integral with the on-shell constraint for the
cut graph. Clearly, Eq. (2.73) is divergent as either :� ! 0 or :� ! 1. Since the rapidity of the
emission : is given by H: = 1

2 ln(:+/:�), these limits correspond to H: ! ±1, which explains
the terminology “rapidity divergence”. To regulate it in a manner consistent with the above
calculation of the unsubtracted TMD PDF, we again use the ◆ regulator [110, 103], which for
the soft function inserts the factor
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(The absolute value is important.) Here F(�, ⇡) is a bookkeeping parameter for the rapidity
divergence, related to a bare parameter by F
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Inserting this into Eq. (2.73), we obtain the bare rapidity-regulated soft function as
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where the integral over :) is easily obtained similar to Eq. (2.64). Expanding in � ! 0 and
& ! 0 and using Eq. (2.66), we obtain
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TMD PDF. Having calculated the unsubtracted TMD PDF and the soft function at one loop,
we can now combine them into the TMD PDF following Eq. (2.33). To do so, we first note that
in the ◆ regulator we have chosen for illustration, the soft subtraction factor is equal to unity,
(̃
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=0=1

= 1 [103], so from Eq. (2.33) the physical TMD PDF is constructed as
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Comparing the one-loop results Eqs. (2.70) and (2.76), we see that all poles in � precisely cancel
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fixing :
+ = k2

)
/(2:�) � 80 with :

� > 0. This gives an equivalent result to the expression in the
second line, which uses Eq. (2.62) to express the integral with the on-shell constraint for the
cut graph. Clearly, Eq. (2.73) is divergent as either :� ! 0 or :� ! 1. Since the rapidity of the
emission : is given by H: = 1

2 ln(:+/:�), these limits correspond to H: ! ±1, which explains
the terminology “rapidity divergence”. To regulate it in a manner consistent with the above
calculation of the unsubtracted TMD PDF, we again use the ◆ regulator [110, 103], which for
the soft function inserts the factor
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(The absolute value is important.) Here F(�, ⇡) is a bookkeeping parameter for the rapidity
divergence, related to a bare parameter by F
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Inserting this into Eq. (2.73), we obtain the bare rapidity-regulated soft function as

(̃
0 (1)
@

(1) , &, �) =
6

2
0⇠�

�
⇡�

2�
p
�
�
⇣1
2 � �

2

⌘
�
⇣�
2

⌘ π d2�2&k)

(2�)3�2
4
8b) ·k)

:
2+�
)

=
6

2
0⇠�

�
⇡�

2�
p
�
�
⇣1
2 � �

2

⌘
�
⇣�
2

⌘ �&�(�& � �/2)
4�2��(1 + �/2)1

2&+�
)

, (2.76)

where the integral over :) is easily obtained similar to Eq. (2.64). Expanding in � ! 0 and
& ! 0 and using Eq. (2.66), we obtain
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TMD PDF. Having calculated the unsubtracted TMD PDF and the soft function at one loop,
we can now combine them into the TMD PDF following Eq. (2.33). To do so, we first note that
in the ◆ regulator we have chosen for illustration, the soft subtraction factor is equal to unity,
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Comparing the one-loop results Eqs. (2.70) and (2.76), we see that all poles in � precisely cancel
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second line, which uses Eq. (2.62) to express the integral with the on-shell constraint for the
cut graph. Clearly, Eq. (2.73) is divergent as either :� ! 0 or :� ! 1. Since the rapidity of the
emission : is given by H: = 1

2 ln(:+/:�), these limits correspond to H: ! ±1, which explains
the terminology “rapidity divergence”. To regulate it in a manner consistent with the above
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Inserting this into Eq. (2.73), we obtain the bare rapidity-regulated soft function as
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where the integral over :) is easily obtained similar to Eq. (2.64). Expanding in � ! 0 and
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TMD PDF. Having calculated the unsubtracted TMD PDF and the soft function at one loop,
we can now combine them into the TMD PDF following Eq. (2.33). To do so, we first note that
in the ◆ regulator we have chosen for illustration, the soft subtraction factor is equal to unity,
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Comparing the one-loop results Eqs. (2.70) and (2.76), we see that all poles in � precisely cancel
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fixing :
+ = k2

)
/(2:�) � 80 with :

� > 0. This gives an equivalent result to the expression in the
second line, which uses Eq. (2.62) to express the integral with the on-shell constraint for the
cut graph. Clearly, Eq. (2.73) is divergent as either :� ! 0 or :� ! 1. Since the rapidity of the
emission : is given by H: = 1

2 ln(:+/:�), these limits correspond to H: ! ±1, which explains
the terminology “rapidity divergence”. To regulate it in a manner consistent with the above
calculation of the unsubtracted TMD PDF, we again use the ◆ regulator [110, 103], which for
the soft function inserts the factor
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where the integral over :) is easily obtained similar to Eq. (2.64). Expanding in � ! 0 and
& ! 0 and using Eq. (2.66), we obtain
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TMD PDF. Having calculated the unsubtracted TMD PDF and the soft function at one loop,
we can now combine them into the TMD PDF following Eq. (2.33). To do so, we first note that
in the ◆ regulator we have chosen for illustration, the soft subtraction factor is equal to unity,
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= 1 [103], so from Eq. (2.33) the physical TMD PDF is constructed as
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Comparing the one-loop results Eqs. (2.70) and (2.76), we see that all poles in � precisely cancel
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Here /6 = 1 + O(62) is the strong coupling counterterm which can be set to one for this
one-loop calculation. The inclusion of the factor of (4✏⇢/4�)&/2 implements the use of the MS
scheme rather than MS scheme.4

Eq. (2.65) seems satisfactory, as we apparently only need to expand in & ! 0 to obtain the
desired bare result. This will yield poles in 1/& that arise from regulating the :) ! 0 region in
Eq. (2.64). However, there is still one problem: the result in Eq. (2.65) diverges as G ! 1, i.e. in
the limit when the struck quark carries all the energy of the parent hadron, or equivalently
where the energy of the emitted gluon vanishes, :+ ! 0. This is precisely the manifestation
of the rapidity divergence at one loop in the unsubtracted TMD PDF, which will only cancel
when combining Eq. (2.65) with the soft function, which has a similar divergence as :

⇠ ! 0.
In order to correctly combine the two results, we need to regulate this divergence. Then, after
combination we can remove the regulator and obtain the desired finite result.

To illustrate this in practice, in the following we employ the ◆ regulator [110, 103], which
modifies the formula for Wilson lines, and which can be implemented directly at the level of
Eq. (2.65). The regulator results in adding the following factor to the integral5
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It allows us to regulate the divergent term in Eq. (2.65) through the identity
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Here, the plus prescription is defined such that
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such that it only modifies the limit G ! 1 in a way that yields a well-defined integral up
to G = 1. Applying Eq. (2.67) to Eq. (2.65) and using Eq. (2.68), we finally obtain the bare
unsubtracted TMD PDF
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Here, we introduced the shorthand notation

!1 = ln
b2
)
⇠2

1
2
0

, with 10 = 24�✏⇢ , (2.71)

4Note that another, slightly less popular, definition of MS replaces 4
&✏⇢ ! 1/�(1 � &) in Eq. (2.66). One must

be careful about which convention is being used when examining perturbative results in the literature.
5In [110, 103], the regulator is denoted as ◆. For continuity of the presentation, here we denote it as �. The

factor of
p

2 compensates for a different light-cone convention in [110, 103].
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Collins-Soper kernel  
or rapidity anomalous dimension
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(μ f ,ζ f )

(μi,ζi)

(μ f ,ζμ f )

equipotential (zero evolution)

Figure 4.4: 2-D evolution field for TMD evolution. Left: Field lines for 2-D anomalous dimensions
Eq. (4.72) and equipotential lines in grey. The two red lines pass through the saddle point. Right: TMD
evolution along the straight line paths similar to Fig. 4.3 in red, and along a path incorporating an
equipotential line in green. Figures taken/modified from [242].

whose solution is,
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. (4.80)

Along the line
�
⇠, ✓equi(⇠;⇠0, ✓0)

�
, the total evolution from (⇠0, ✓0) is zero, and 5 (G , b) , ⌫) is

the same everywhere on this line. This lets us envision evolution along the green path shown
in Fig. 4.4, so the nonzero evolution is only along the vertical segment from ✓ 5 to ✓equi at ⇠ 5 :

*(⌫ 5 ) �*(⌫8) =
1
2✏✓(⇠ 5 , 1)) ln

✓ 5

✓equi(⇠ 5 ;⇠0, ✓0)
, (4.81)

which is a nice, compact expression. Plugging in Eq. (4.80), however, we see it is perfectly
equivalent to the expressions Eq. (4.77), encoding the evolution in the horizontal ⇠ direction
instead in the exact location of ✓equi as a function of the initial ⇠0, ✓0. At any finite order of
resummed accuracy, these scales (or at least the final location of ✓equi(⇠ 5 ; ⌫0)) should still be
varied to probe the residual theoretical uncertainty.

4.7 Connecting Resummation to Fixed Order
A primary goal of transverse-momentum-dependent (TMD) factorization theorems [88,

121, 66, 259, 125, 16, 77, 11, 100, 115], is to describe the cross section as a function of the
transverse momentum q) point-by-point, from small @) ⇠ < (where < is a typical hadronic
mass scale), to large @) ⇠ &, where & is a large momentum or mass in the reaction and
sets the hard scale [239, 260, 181, 253]. In order to achieve this, Collins, Soper and Sterman

rapidity evolution

UV evolution
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in QCD. The consistency relations between anomalous dimensions of hard and TMD PDF
pieces of the cross section Eq. (4.7), as well as between UV and rapidity evolution of the TMD
PDFs expressed in Eq. (4.7), guarantee the further universality between the cusp anomalous
dimension and the rapidity anomalous dimension.

Finally, we obtain the generic solution for the evolved TMD PDF in Eq. (4.1) by performing
integration on the rapidity parameter ✓ in Eq. (4.12b), and integration on the renormalization
scale ⇠ in Eq. (4.12a), where we have evolved the TMD PDF from the pair of initial to final
scales {⇠0, ✓0} ! {⇠, ✓}, and illustrated by Fig. 4.2,
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which gives definitions to the RG and RRG evolution kernels * and + in Eq. (4.1). The RG
evolution between scales ⇠0, ⇠ is governed by the anomalous dimension ✏@ , and the rapidity
evolution between the rapidity scales ✓0, ✓ by the Collins-Soper kernel  ̃.

Below we will review how the evolution equations Eq. (4.12), and solutions (4.17) are
applied to exploit the universality properties of the nonperturbative content which emphasize
the intrinsic properties associated with hadronic structure in (4.17), as well as the perturbative
content which are optimized to have no large logarithms in their expansion in powers of
�B . First we consider the treatment in the CSS formalism, in which the Wilson lines in the
definition of the TMD PDF are tilted away from the light-cone. Then we cover the treatment
in the SCET framework, in which the TMD PDFs are factored into beam and soft functions,
each with their own RG and rapidity RG evolution equations, which combine to give the same
TMD evolution equations Eq. (4.12). We will also review how explicit forms for the solutions
of these equations can be written, first in b) space and then transformed to momentum space,
and also directly in momentum space. The difference in various prescriptions or approaches
to doing this amounts to alternative choices (implicit or explicit) for the low scales from which
the TMD PDFs are evolved.

First, however in Table 4.2 we summarize the orders of accuracy to which the anomalous
dimensions and other relevant quantities (the beta function for running of �B and fixed-order
coefficient functions in, e.g., Eq. (4.30)), need to be known, in powers : of �:

B
, to achieve the

orders of accuracy in resummed logs illustrated in Eq. (4.4). In the next section we illustrate
the calculations to leading order in �B .
4.3.1 One-loop examples

From the calculations of quark TMD PDFs in perturbation theory in Sec. 2.4.2, we can
illustrate how to obtain their UV and rapidity anomalous dimensions to one-loop order. For
higher-order results, see appendix E.

We recall that the UV anomalous dimension is associated with the behavior of the TMD
PDF as the arbitrary boundary between hard scales& and low scales @) or 1/1) is varied, while
the rapidity anomalous dimension is associated with its behavior as the (arbitrary) boundaries
between forward/backward and central rapidities is varied. At one-loop order, the variation
with respect to these boundaries can be obtained from the soft and collinear divergences in the
one-loop graphs shown in Fig. 2.2. From the one-loop result for the bare TMD PDF in Eq. (2.70)
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expressed as a convolution over the partonic transverse momenta of two TMD PDFs:
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:

xA =
Qp
s
e
y
, xB =

Qp
s
e
�y

. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:
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where the
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symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:
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. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
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|qT |f

|qT |i

d|qT |
ˆ yf

yi

dy

ˆ Qf

Qi

dQ
d�

DY/Z

d|qT | dy dQ
, (10)

where the
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symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
The following definition of the Fourier transform of the TMD PDFs has been used:4
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:

xA =
Qp
s
e
y
, xB =

Qp
s
e
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. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by

ca(Q
2) = e

2
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
DY, 1(|qT |i,f , yi,f , Qi,f ) =
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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In the above equation, HDY is the hard factor, which can be computed order by order in the strong coupling ↵s

and is equal to 1 at leading order.3 This function encodes the virtual part of the hard scattering and depends on
the hard scale Q and on the renormalisation scale µ. The unpolarized TMDs are denoted by f1. They depend
on the renormalization scale µ and the rapidity scale ⇣. The rapidity scales must obey the relation ⇣A⇣B = Q

4.
Throughout the paper, we will set µ2 = ⇣A = ⇣B = Q

2.
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The structure of the TMD PDFs will be addressed in details in Sec. II C. The transverse momentum of the
active quark and antiquark are denoted as k?A,B . At low transverse momenta, the two variables xA,B take the
values:

xA =
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s
e
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, xB =
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s
e
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. (6)

The summation over a in Eq. (4) runs over the active quarks and antiquarks at the scale Q, and ca(Q2) are
the respective electroweak charges given by
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where ea, Va, and Aa are the electric, vector, and axial charges of the flavor a, respectively; V` and A` are the
vector and axial charges of the lepton `; sin ✓W is the weak mixing angle; MZ and �Z are mass and width of
the Z boson.

As discussed in Sec. III and summarized in Tab. II, for DY production the observable provided by the
experimental collaborations is the (normalized) cross section di↵erential with respect to |qT |. For each bin
delimited by the initial (i) and final (f) values of kinematical variables, the experimental values are compared
with the following theoretical quantity:

Oth
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where the
�

symbol represents the integral divided by the width of the integration range. Hence, Eq. (10)
corresponds to the cross section in Eq. (3) averaged over the transverse momentum and integrated over rapidity
and invariant mass of the exchanged boson. The normalized cross section is obtained by dividing both sides of
Eq. (10) by the appropriate fiducial cross section, which is computed by employing the DYNNLO code [35, 36].5

3 In the present work, we follow the definition of Ref. [34].
4 Notice that in Ref. [5] the Fourier transform was defined with an extra 1/(2⇡) factor.
5 See https://www.physik.uzh.ch/en/groups/grazzini/research/Tools.html
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Framewor
k HERMES COMPASS DY Z 

production N of points

KN 2006  
hep-ph/0506225

NLL’ ✘ ✘ ✔ ✔ 98

Pavia 2013 
arXiv:1309.3507 LO ✔ ✘ ✘ ✘ 1538

Torino 2014 
arXiv:1312.6261 LO ✔  

(separately)
✔  

(separately)
✘ ✘ 576 (H) 

6284 (C)
DEMS 2014  
arXiv:1407.3311 NNLL’ ✘ ✘ ✔ ✔ 223

EIKV 2014  
arXiv:1401.5078 NLL 1 (x,Q2) bin 1 (x,Q2) bin ✔ ✔ 500 (?)

SIYY 
arXiv:1406.3073 NLL’ qualitative qualitative ✔ ✔ 140

Pavia 2017
arXiv:1703.10157 NLL ✔ ✔ ✔ ✔ 8059

SV 2017  
arXiv:1706.01473 NNLL’ ✘ ✘ ✔ ✔ 309

http://arxiv.org/abs/hep-ph/0506225
http://arxiv.org/abs/arXiv:1309.3507
http://arxiv.org/abs/arXiv:1407.3311
http://arxiv.org/abs/arXiv:1401.5078
https://arxiv.org/abs/1406.3073
http://arxiv.org/abs/arXiv:1703.10157
http://arxiv.org/abs/arXiv:1706.01473
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2017: the dawn of TMD global fits era
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Accuracy SIDIS 
HERMES

SIDIS 
COMPASS

DY fixed 
target DY collider N of 

points χ2/Npoints

Pavia 2017 
arXiv:1703.10157 NLL ✔ ✔ ✔ ✔ 8059 1.55

SV 2019 
arXiv:1912.06532 N3LL− ✔ ✔ ✔ ✔ 1039 1.06

MAP22 
arXiv:2206.07598 N3LL− ✔ ✔ ✔ ✔ 2031 1.06

ART23 
arXiv:2305.07473 N4LL− ✔ ✔ 627 0.96

http://arxiv.org/abs/arXiv:1703.10157
http://www.arxiv.org/abs/1912.06532
https://arxiv.org/abs/2206.07598
https://arxiv.org/abs/2305.07473
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Groups/Collaborations active on PDFs

EU EIC School 23 49

Many groups active since the mid 80’s in the DGLAP analyses. The “modern era” of PDF fitting started
at the beginning of the 90s (CTEQ1, MRS).
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Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

The kinematic region in x and Q covered by the data set and thus contributing to the deter-
mination of TMDPDF is shown in fig. 5. The boxes enclose the sub-regions covered by the single
data sets. Looking at fig. 5, it is possible to distinguish two main clusters of data: the “low-energy
experiments”, i.e. E288, E605, E772, PHENIX, COMPASS and HERMES that place themselves
at invariant-mass energies between 1 and 18 GeV, and the “high-energy experiments”, i.e. all those
from Tevatron and LHC, that are instead distributed around the Z-peak region. From this plot we
observe that, kinematic ranges of SIDIS and DY data do not overlap.

As a final comment of this section let us mention that our data selection is particularly conser-
vative because it drops points that could potentially be described by TMD factorization (see e.g.
ref. [18] where a less conservative choice of cuts is used). However, our fitted data set guarantees
that we operate well within the range of validity of TMD factorization. In sec. 7 we show that
unexpectedly our extraction can describe a larger set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to extract
valuable information for the TMD extraction, one has to detail the methodology that has been
followed, and this is the purpose of this section. Finally, we also provide a suitable definition of the
�2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, (part of) HERMES (isoscalar targets) come
from nuclear target processes. In these cases, we perform the iso-spin rotation of the corresponding
TMDPDF that simulates the nuclear-target effects. For example, we replace u-, and d-quark
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

http://arxiv.org/abs/arXiv:1912.06532
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that we operate well within the range of validity of TMD factorization. In sec. 7 we show that
unexpectedly our extraction can describe a larger set of data as well.

4 Fit procedure

The experimental data are usually provided in a form specific for each setup. In order to extract
valuable information for the TMD extraction, one has to detail the methodology that has been
followed, and this is the purpose of this section. Finally, we also provide a suitable definition of the
�2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, (part of) HERMES (isoscalar targets) come
from nuclear target processes. In these cases, we perform the iso-spin rotation of the corresponding
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A. Drell-Yan

Our analysis is based on TMD factorization, which is applicable only in the region |qT | ⌧ Q. Therefore, in
agreement with the choices of Refs. [7, 22] we impose the following cut

|qT | < 0.2Q . (53)

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

http://arxiv.org/abs/arXiv:1912.06532
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https://github.com/MapCollaboration/NangaParbat

see Matteo’s cooking session



Available tools: artemide
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https://teorica.fis.ucm.es/artemide/



Available tools: TMDlib and TMDplotter
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https://tmdlib.hepforge.org/
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Accurate predictions over a wide range in qT require matching resummed calculations
(valid at qT ⌧ Q) to the corresponding fixed-order calculation (valid at qT . Q). In this
context, the primed ordering turns out to be more advantageous. Indeed, the accuracy
of a fixed-order calculation is measured in terms of powers of ↵s relative to the leading
term. In order to produce a Z boson with large qT , it is necessary to produce (at least) a
second object with large transverse momentum against which the Z boson recoils, i.e., a
jet. As a consequence, the leading-order (LO) contribution to the qT distribution of the Z

at fixed order is O(↵s). The NLL0 prescription correctly reproduces the small-qT limit of
the LO fixed-order calculation. It is then possible to realise the matching in an additive way
by combining the NLL0 resummed calculation with the LO fixed-order one (NLL0 + LO).
The procedure can be extended to higher orders: NNLL0 + NLO, N3LL0 + NNLO, and so
on. Conversely, in the standard counting the matching to the LO fixed-order calculation
requires to go further to NNLL accuracy (NNLL + LO), combining in this way a rather
accurate calculation at small qT with a poorly accurate calculation at large qT . At higher
orders one has N3LL + NLO, N4LL + NNLO, and so on. We remark that other forms of
matching can be used to overcome the limitation of the standard counting [33, 52, 53].

Finally, Tab. 1 summarises the perturbative ingredients to be used for a consistent
computation of the cross section in Eq. (2.10) for both the standard and the primed count-
ings. The numbers in Tab. 1 give the maximum power of ↵s at which the corresponding
quantity is to be computed, while the last column reports the corresponding accuracy in
computing the evolution of the collinear PDFs and of the coupling ↵s.5 In this analysis, we
have used the PDF sets of the MMHT2014 family [54] at the appropriate perturbative order
accessed through the LHAPDF interface [55].

Accuracy H and C K and �F �K PDF and ↵s evolution
LL 0 - 1 -

NLL 0 1 2 LO
NLL0 1 1 2 NLO
NNLL 1 2 3 NLO
NNLL0 2 2 3 NNLO
N3LL 2 3 4 NNLO

Table 1. Truncation order in the expansions of Eqs. (2.20)-(2.22) for the two logarithmic countings
considered in this paper (see text). The last column reports the order used for the evolution of the
collinear PDFs and ↵s.

5In the “unprimed” counting, ↵s is evolved at one loop less than the cusp anomalous dimensions for
two reasons: first, the running coupling renormalization group equation resums single logs, therefore the �

function can be taken at the same order as the non-cusp anomalous dimension. Secondly, in our analysis
for consistency we take ↵s from the LHAPDF grid of the PDF set we use.

– 11 –
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✏ 
�
�B(⇠)

�
�[�B(⇠)] ✏@

�
�B(⇠); 1

�
 ̃(1̄) ; 1/1̄)) ⇠̃

9/90 accuracy accuracy (SCET)

— — — — 0 QPM

1 1 — — 0 LO-LL LL

2 2 1 1 0 LO-NLL NLL

3 3 2 2 0 LO-NNLL

2 2 1 1 1 NLO-NLL NLL0

3 3 2 2 1 NLO-NNLL NNLL

3 3 2 2 2 NNLO-NNLL NNLL0

4 4 3 3 2 NNLO-N3LL N3LL

4 4 3 3 3 N3LO-N3LL N3LL’

Table 4.2: Orders of accuracy needed for evolution of TMD PDFs and other ingredients entering the
transverse momentum dependent, term needed to achieve given orders of logarithmic accuracy (LL,
NLL, NNLL, etc.). The numbers refer to the loop order : to which the quantity needs to be computed,
e.g. : = = + 1 in terms of the coefficients in the expansions Eqs. (E.1) and (E.6) of the anomalous
dimensions or beta function. (A dash “—” indicates the quantity does not exist at �0

B
.) The names

of anomalous dimensions are those in the CSS row of Table 4.1, same counting applies to other rows.
We also include the needed accuracies for coefficient functions ⇠̃ that will appear in Eq. (4.30) (which
corresponds to perturbative expansions of beam and soft functions in SCET in Eq. (4.42).) “QPM”
refers to the quark parton model, i.e., Born-level. This table describes the accuracy of the resummed ,
term; a full prediction for a TMD cross section will include matching to a fixed-order “.” term whose
accuracy is specified separately, see Sec. 4.7.

using MS to regulate the UV divergences and the ◆ regulator for rapidity divergences, one
obtains the UV renormalization factor Eq. (2.80), from which the anomalous dimension of the
renormalized TMD PDF in Eq. (2.81) can be obtained by the condition of ⇠-independence of
the bare TMD PDF,

✏
@

⇠(⇠, ✓) = �(/@uv)�1⇠
3

3⇠
/
@

uv , (4.18)

which to one loop gives

✏
@

⇠(⇠, ✓) =
�B(⇠)⇠�

�

✓
3
2 + ln

⇠2

✓

◆
, (4.19)

where in evaluating the ⇠ derivative in Eq. (4.18) it is important to remember the relation
Eq. (2.66) between the bare and renormalized coupling constants. Equivalently one can just
take the 3/3 ln⇠ derivative of the renormalized TMD PDF itself, Eq. (2.81).

Meanwhile the Collins-Soper kernel, or equivalently the rapidity anomalous dimension, is
obtained from the ln

p
✓ derivative of the renormalized TMD PDF in Eq. (2.81), which gives to

one loop

✏
@

✓ (⇠, 1)) = �
2�B(⇠)⇠�

�
ln

⇠1)
10

, (4.20)
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Eqs. (4.25) and (4.26) and using (4.15a) in (4.24), Eq. (4.17) can be expressed as,
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. (4.27)

Finally to optimize the solution for perturbative calculations, RG and RRG transformations
are performed, ⇠0 ! 1/1⇤ and ✓0 ! 1/12

⇤ respectively, permitting perturbative calculations of
 ̃ and 5̃ [11], where now (4.27) becomes

5̃
8/?(G , b) , ⇠, ✓) = 5̃

8/?(G , b⇤, ⇠1⇤ , ⇠
2
1⇤
)

⇥ exp

ln

p
✓

⇠1⇤
 ̃(1⇤, ⇠1⇤) +

π ⇠

⇠1⇤

3⇠0

⇠0

✓
✏@[�B(⇠0); 1] � ln

p
✓

⇠0 ✏ [�B(⇠
0)]

◆�

⇥ exp

"
�6

8/?(G , 1)) � ln

 s
✓
✓00

!
6:(1) ; 1max)

#
, (4.28)

with
⇠1⇤ ⌘

⇠1
1⇤

, (4.29)

where ⇠1/1⇤ is the hard scale. It is chosen to allow perturbative calculations of 1⇤-dependent
quantities and where ⇠1 is a constant of order unity chosen to allow for perturbative calcula-
tions without large logarithms [11, 250].

Thus, we can express the TMD parton densities at small b) in terms of the integrated PDFs
using an operator product expansion as expressed in Sec. 2.8, where now, Eq. (2.149) takes the
form,
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(4.30)

Thus, the first line of (4.28) is expressed in terms of the collinear pdfs using an OPE in terms
of collinear PDFs [11, 85, 250],
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Eqs. (4.25) and (4.26) and using (4.15a) in (4.24), Eq. (4.17) can be expressed as,
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Finally to optimize the solution for perturbative calculations, RG and RRG transformations
are performed, ⇠0 ! 1/1⇤ and ✓0 ! 1/12

⇤ respectively, permitting perturbative calculations of
 ̃ and 5̃ [11], where now (4.27) becomes
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where ⇠1/1⇤ is the hard scale. It is chosen to allow perturbative calculations of 1⇤-dependent
quantities and where ⇠1 is a constant of order unity chosen to allow for perturbative calcula-
tions without large logarithms [11, 250].

Thus, we can express the TMD parton densities at small b) in terms of the integrated PDFs
using an operator product expansion as expressed in Sec. 2.8, where now, Eq. (2.149) takes the
form,
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Ĝ

⇠̃
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(4.30)

Thus, the first line of (4.28) is expressed in terms of the collinear pdfs using an OPE in terms
of collinear PDFs [11, 85, 250],
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Eqs. (4.25) and (4.26) and using (4.15a) in (4.24), Eq. (4.17) can be expressed as,
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Finally to optimize the solution for perturbative calculations, RG and RRG transformations
are performed, ⇠0 ! 1/1⇤ and ✓0 ! 1/12

⇤ respectively, permitting perturbative calculations of
 ̃ and 5̃ [11], where now (4.27) becomes
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where ⇠1/1⇤ is the hard scale. It is chosen to allow perturbative calculations of 1⇤-dependent
quantities and where ⇠1 is a constant of order unity chosen to allow for perturbative calcula-
tions without large logarithms [11, 250].

Thus, we can express the TMD parton densities at small b) in terms of the integrated PDFs
using an operator product expansion as expressed in Sec. 2.8, where now, Eq. (2.149) takes the
form,
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3Ĝ

Ĝ

⇠̃
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(4.30)

Thus, the first line of (4.28) is expressed in terms of the collinear pdfs using an OPE in terms
of collinear PDFs [11, 85, 250],
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Eqs. (4.25) and (4.26) and using (4.15a) in (4.24), Eq. (4.17) can be expressed as,
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Finally to optimize the solution for perturbative calculations, RG and RRG transformations
are performed, ⇠0 ! 1/1⇤ and ✓0 ! 1/12

⇤ respectively, permitting perturbative calculations of
 ̃ and 5̃ [11], where now (4.27) becomes
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with
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where ⇠1/1⇤ is the hard scale. It is chosen to allow perturbative calculations of 1⇤-dependent
quantities and where ⇠1 is a constant of order unity chosen to allow for perturbative calcula-
tions without large logarithms [11, 250].

Thus, we can express the TMD parton densities at small b) in terms of the integrated PDFs
using an operator product expansion as expressed in Sec. 2.8, where now, Eq. (2.149) takes the
form,
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3Ĝ

Ĝ
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(4.30)

Thus, the first line of (4.28) is expressed in terms of the collinear pdfs using an OPE in terms
of collinear PDFs [11, 85, 250],
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Eqs. (4.25) and (4.26) and using (4.15a) in (4.24), Eq. (4.17) can be expressed as,
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Finally to optimize the solution for perturbative calculations, RG and RRG transformations
are performed, ⇠0 ! 1/1⇤ and ✓0 ! 1/12

⇤ respectively, permitting perturbative calculations of
 ̃ and 5̃ [11], where now (4.27) becomes
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with
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where ⇠1/1⇤ is the hard scale. It is chosen to allow perturbative calculations of 1⇤-dependent
quantities and where ⇠1 is a constant of order unity chosen to allow for perturbative calcula-
tions without large logarithms [11, 250].

Thus, we can express the TMD parton densities at small b) in terms of the integrated PDFs
using an operator product expansion as expressed in Sec. 2.8, where now, Eq. (2.149) takes the
form,
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Thus, the first line of (4.28) is expressed in terms of the collinear pdfs using an OPE in terms
of collinear PDFs [11, 85, 250],
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Eqs. (4.25) and (4.26) and using (4.15a) in (4.24), Eq. (4.17) can be expressed as,
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Finally to optimize the solution for perturbative calculations, RG and RRG transformations
are performed, ⇠0 ! 1/1⇤ and ✓0 ! 1/12

⇤ respectively, permitting perturbative calculations of
 ̃ and 5̃ [11], where now (4.27) becomes
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where ⇠1/1⇤ is the hard scale. It is chosen to allow perturbative calculations of 1⇤-dependent
quantities and where ⇠1 is a constant of order unity chosen to allow for perturbative calcula-
tions without large logarithms [11, 250].

Thus, we can express the TMD parton densities at small b) in terms of the integrated PDFs
using an operator product expansion as expressed in Sec. 2.8, where now, Eq. (2.149) takes the
form,
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Thus, the first line of (4.28) is expressed in terms of the collinear pdfs using an OPE in terms
of collinear PDFs [11, 85, 250],
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Eqs. (4.25) and (4.26) and using (4.15a) in (4.24), Eq. (4.17) can be expressed as,
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Finally to optimize the solution for perturbative calculations, RG and RRG transformations
are performed, ⇠0 ! 1/1⇤ and ✓0 ! 1/12

⇤ respectively, permitting perturbative calculations of
 ̃ and 5̃ [11], where now (4.27) becomes
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with
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where ⇠1/1⇤ is the hard scale. It is chosen to allow perturbative calculations of 1⇤-dependent
quantities and where ⇠1 is a constant of order unity chosen to allow for perturbative calcula-
tions without large logarithms [11, 250].

Thus, we can express the TMD parton densities at small b) in terms of the integrated PDFs
using an operator product expansion as expressed in Sec. 2.8, where now, Eq. (2.149) takes the
form,
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Thus, the first line of (4.28) is expressed in terms of the collinear pdfs using an OPE in terms
of collinear PDFs [11, 85, 250],
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3Ĝ

Ĝ
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Accurate predictions over a wide range in qT require matching resummed calculations
(valid at qT ⌧ Q) to the corresponding fixed-order calculation (valid at qT . Q). In this
context, the primed ordering turns out to be more advantageous. Indeed, the accuracy
of a fixed-order calculation is measured in terms of powers of ↵s relative to the leading
term. In order to produce a Z boson with large qT , it is necessary to produce (at least) a
second object with large transverse momentum against which the Z boson recoils, i.e., a
jet. As a consequence, the leading-order (LO) contribution to the qT distribution of the Z

at fixed order is O(↵s). The NLL0 prescription correctly reproduces the small-qT limit of
the LO fixed-order calculation. It is then possible to realise the matching in an additive way
by combining the NLL0 resummed calculation with the LO fixed-order one (NLL0 + LO).
The procedure can be extended to higher orders: NNLL0 + NLO, N3LL0 + NNLO, and so
on. Conversely, in the standard counting the matching to the LO fixed-order calculation
requires to go further to NNLL accuracy (NNLL + LO), combining in this way a rather
accurate calculation at small qT with a poorly accurate calculation at large qT . At higher
orders one has N3LL + NLO, N4LL + NNLO, and so on. We remark that other forms of
matching can be used to overcome the limitation of the standard counting [33, 52, 53].

Finally, Tab. 1 summarises the perturbative ingredients to be used for a consistent
computation of the cross section in Eq. (2.10) for both the standard and the primed count-
ings. The numbers in Tab. 1 give the maximum power of ↵s at which the corresponding
quantity is to be computed, while the last column reports the corresponding accuracy in
computing the evolution of the collinear PDFs and of the coupling ↵s.5 In this analysis, we
have used the PDF sets of the MMHT2014 family [54] at the appropriate perturbative order
accessed through the LHAPDF interface [55].

Accuracy H and C K and �F �K PDF and ↵s evolution
LL 0 - 1 -

NLL 0 1 2 LO
NLL0 1 1 2 NLO
NNLL 1 2 3 NLO
NNLL0 2 2 3 NNLO
N3LL 2 3 4 NNLO

Table 1. Truncation order in the expansions of Eqs. (2.20)-(2.22) for the two logarithmic countings
considered in this paper (see text). The last column reports the order used for the evolution of the
collinear PDFs and ↵s.

5In the “unprimed” counting, ↵s is evolved at one loop less than the cusp anomalous dimensions for
two reasons: first, the running coupling renormalization group equation resums single logs, therefore the �

function can be taken at the same order as the non-cusp anomalous dimension. Secondly, in our analysis
for consistency we take ↵s from the LHAPDF grid of the PDF set we use.
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