Theory of TMDs

Alessandro Bacchetta (Pavia U. and INFN) alessandro.bacchetta@unipv.it

European Summer School on the Physics of the Electron-Ion Collider June 18-22, 2023 Corigliano-Rossano Italy

Plan of the lectures

✓ Review the idea of structure functions for DIS and introduce them for semiinclusive DIS

✓ Introduce the idea of quark-quark correlation functions

✓ Parametrize correlation functions in terms of PDFs or Transverse Momentum Distributions (TMDs)

✓ Obtain the expression of structure functions for semi-inclusive DIS in terms of TMDs

- Discuss concept of TMD factorization and TMD evolution
- Discuss a bit of phenomenology

Final formula for hadronic tensor

$$2MW^{\mu\nu}(q, P, S, P_h) = \frac{2z_h}{x_B} \mathcal{C} \Big[\operatorname{Tr}(\Phi(x_B, p_T, S) \gamma^{\mu} \Delta(z_h, K_T) \gamma^{\nu}) \Big]$$

$$\stackrel{P_h}{\longrightarrow} \Delta$$

$$\stackrel{q}{\rightarrow} \bigvee \stackrel{p\uparrow}{\longrightarrow} 0$$

$$\mathcal{C}[wfD] = \sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{K}_{T} \,\delta^{(2)} \left(z \boldsymbol{p}_{T} - \boldsymbol{K}_{T} - \boldsymbol{P}_{h\perp} \right) w(\boldsymbol{p}_{T}, \boldsymbol{K}_{T}) f^{a}(x, p_{T}^{2}) D^{a}(z, K_{T}^{2}),$$

Final formula for hadronic tensor

$$2MW^{\mu\nu}(q, P, S, P_h) = \frac{2z_h}{x_B} \mathcal{C} \left[\operatorname{Tr}(\Phi(x_B, p_T, S) \gamma^{\mu} \Delta(z_h, K_T) \gamma^{\nu}) \right]$$

$$\stackrel{P_h}{\longrightarrow} \Delta$$

$$\stackrel{q}{\rightarrow} \bigvee \bigvee$$

$$\stackrel{p^{\uparrow}}{\longrightarrow} 0$$

$$\mathcal{C}[wfD] = \sum_{a} x e_a^2 \int d^2 \boldsymbol{p}_T \, d^2 \boldsymbol{K}_T \, \delta^{(2)} \left(z \boldsymbol{p}_T - \boldsymbol{K}_T - \boldsymbol{P}_{h\perp} \right) w(\boldsymbol{p}_T, \boldsymbol{K}_T) \, f^a(x, p_T^2) \, D^a(z, K_T^2),$$

Only at low transverse momentum

 $oldsymbol{P}_{h\perp}^2 \ll Q^2$

Quark-quark correlation functions

$$\Phi_{ij}(x,S) = \int d^2 \boldsymbol{p}_T \, \Phi_{ij}(x,\boldsymbol{p}_T)$$
$$= \int \frac{d\xi^-}{2\pi} \, e^{i\boldsymbol{p}\cdot\boldsymbol{\xi}} \langle \boldsymbol{P}, \boldsymbol{S} \big| \, \bar{\psi}_j(0) \, \psi_i(\boldsymbol{\xi}) \, \big| \boldsymbol{P}, \boldsymbol{S} \rangle \Big|_{\boldsymbol{\xi}^+ = \boldsymbol{\xi}_T = 0}$$

$$\begin{split} \Phi_{ij}(x, \boldsymbol{p}_T, S) &= \int dp^- \left. \Phi(p, P, S) \right|_{p^+ = xP^+} \\ &= \int \frac{d\xi^- d^2 \boldsymbol{\xi}_T}{(2\pi)^3} \left. e^{ip \cdot \xi} \left\langle P, S \right| \overline{\psi}_j(0) \, \psi_i(\xi) \left| P, S \right\rangle \right|_{\xi^+ = 0} \end{split}$$

 ξ^{-}

4

Quark-quark correlation functions

$$\Phi_{ij}(x,S) = \int d^2 \boldsymbol{p}_T \, \Phi_{ij}(x,\boldsymbol{p}_T)$$
$$= \int \frac{d\xi^-}{2\pi} \, e^{i\boldsymbol{p}\cdot\boldsymbol{\xi}} \langle \boldsymbol{P}, \boldsymbol{S} \big| \, \bar{\psi}_j(0) \, \psi_i(\boldsymbol{\xi}) \, \big| \boldsymbol{P}, \boldsymbol{S} \rangle \Big|_{\boldsymbol{\xi}^+ = \boldsymbol{\xi}_T = 0}$$

$$\begin{split} \Phi_{ij}(x, \boldsymbol{p}_T, S) &= \int dp^- \, \Phi(p, P, S) \Big|_{p^+ = xP^+} \\ &= \int \frac{d\xi^- d^2 \boldsymbol{\xi}_T}{(2\pi)^3} \, e^{ip \cdot \xi} \langle P, S \big| \, \overline{\psi}_j(0) \, \psi_i(\xi) \, \big| P, S \rangle \Big|_{\xi^+ = 0} \end{split}$$

 ξ^{-}

4

Quark-quark correlation functions

$$\Phi_{ij}(x,S) = \int d^2 \boldsymbol{p}_T \, \Phi_{ij}(x,\boldsymbol{p}_T)$$
$$= \int \frac{d\xi^-}{2\pi} \, e^{i\boldsymbol{p}\cdot\boldsymbol{\xi}} \langle \boldsymbol{P}, \boldsymbol{S} \big| \, \bar{\psi}_j(0) \, \psi_i(\boldsymbol{\xi}) \, \big| \boldsymbol{P}, \boldsymbol{S} \rangle \Big|_{\boldsymbol{\xi}^+ = \boldsymbol{\xi}_T = 0}$$

$$\Phi_{ij}(x, \mathbf{p}_T, S) = \int dp^- \Phi(p, P, S) \Big|_{p^+ = xP^+}$$

$$= \int \frac{d\xi^- d^2 \boldsymbol{\xi}_T}{(2\pi)^3} e^{ip \cdot \xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle \Big|_{\boldsymbol{\xi}^+ = 0}$$

$$\underbrace{\xi_T} \underbrace{\xi_T} \underbrace{\xi_T}$$

Gauge link

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \; e^{ip\cdot\xi} \langle P,S | \,\overline{\psi}_j(0) \,\psi_i(\xi) \, | P,S \rangle$$

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P,S \big| \,\overline{\psi}_j(0) \,\psi_i(\xi) \,\big| P,S \rangle$$

not invariant under $\psi(\xi) \rightarrow e^{i\alpha(\xi)} \psi(\xi)$

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P,S \big| \,\overline{\psi}_j(0) \,\psi_i(\xi) \,\big| P,S \rangle$$

not invariant under $\psi(\xi) \to e^{i\alpha(\xi)} \psi(\xi)$

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip \cdot \xi} \langle P, S | \ \overline{\psi}_j(0) \ U_{[0,\xi]} \ \psi_i(\xi) \ | P, S \rangle$$

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P,S | \ \overline{\psi}_j(0) \ \psi_i(\xi) | P,S \rangle$$

not invariant under
$$\psi(\xi) \to e^{i\alpha(\xi)} \ \psi(\xi)$$
$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P,S | \ \overline{\psi}_j(0) U_{[0,\xi]} \ \psi_i(\xi) | P,S \rangle$$

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip \cdot \xi} \langle P,S | \ \overline{\psi}_j(0) \ \psi_i(\xi) | P,S \rangle$$

not invariant under
$$\psi(\xi) \to e^{i\alpha(\xi)} \ \psi(\xi)$$
$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip \cdot \xi} \langle P,S | \ \overline{\psi}_j(0) U_{[0,\xi]} \ \psi_i(\xi) | P,S \rangle$$

$$U(\xi_1, \xi_2) \to e^{i\alpha(\xi_1)} U(\xi_1, \xi_2) e^{-i\alpha(\xi_2)}.$$

$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P,S | \ \overline{\psi}_j(0) \ \psi_i(\xi) | P,S \rangle$$

not invariant under
$$\psi(\xi) \to e^{i\alpha(\xi)} \ \psi(\xi)$$
$$\Phi_{ij}(p,P,S) = \frac{1}{(2\pi)^4} \int d^4\xi \ e^{ip\cdot\xi} \langle P,S | \ \overline{\psi}_j(0) \ U_{[0,\xi]} \ \psi_i(\xi) | P,S \rangle$$
$$U(\xi_1,\xi_2) \to e^{i\alpha(\xi_1)} \ U(\xi_1,\xi_2) \ e^{-i\alpha(\xi_2)}.$$

$$U_{[a,b]} = \mathcal{P} \exp\left[-ig \int_{a}^{b} d\eta^{\mu} A_{\mu}(\eta)\right]$$

(a)

First contribution to gauge link

First contribution to gauge link

$$2MW^{(a)}_{\mu\nu} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu} (-ig) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d}\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle$$

compare with:

$$2MW^{\mu\nu}(q, P, S) \approx \sum_{q} e_q^2 \frac{1}{2} \operatorname{Tr} \left[\Phi(x_B, S) \gamma^{\mu} \gamma^+ \gamma^{\nu} \right].$$

0

First contribution to gauge link

$$2MW^{(a)}_{\mu\nu} \sim \langle P, S | \overline{\psi}(0) \gamma_{\mu} \gamma^{+} \gamma_{\nu} (-ig) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d}\eta^{-} A^{+}(\eta) \psi(\xi) | P, S \rangle$$

compare with:

$$2MW^{\mu\nu}(q, P, S) \approx \sum_{q} e_q^2 \frac{1}{2} \operatorname{Tr} \left[\Phi(x_B, S) \gamma^{\mu} \gamma^+ \gamma^{\nu} \right].$$

$$\Phi^{(a)}(x,S) \sim \left\langle P,S \right| \overline{\psi}(0) \left(-ig\right) \int_{\infty^{-}}^{\xi^{-}} \mathrm{d}\eta^{-} A^{+}(\eta) \psi(\xi) \left| P,S \right\rangle$$

Feynman rules for eikonal lines

Figure 13. Feynman rules involving eikonal lines along the direction v. The colour indices r and s refer to either the fundamental or the adjoint representation, whereas j and k are colour triplet and a, b and c are colour octet indices.

Gauge link in collinear PDFs

Gauge link in collinear PDFs

Gauge link in collinear PDFs

Gauge link for TMDs

$$\Phi_{ij}(x, \mathbf{p_T}) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) U_{[0,\xi]} \psi_i(\xi) | P \rangle \bigg|_{\xi^+ = 0}$$

Gauge link for TMDs

$$\Phi_{ij}(x, p_T) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) U_{[0,\xi]} \psi_i(\xi) | P \rangle \Big|_{\xi^+ = 0}$$
SIDIS
$$U_{[+]}$$

Key point (graphically)

Key point (graphically)

Key point (graphically)

Key point (graphically)

$$2MW^{(a)}_{\mu\nu} \sim \int d^4l \int \frac{d^4\eta}{(2\pi)^4} e^{il\cdot(\eta-\xi)} \langle P, S | \overline{\psi}(0)\gamma_{\mu}\gamma^+\gamma_{\alpha} \frac{\not k - \not l}{(k-l)^2 + i\epsilon} \gamma_{\nu} g A^{\alpha}(\eta)\psi(\xi) | P, S \rangle$$

Collins, PLB 536 (02)

Collins, PLB 536 (02)

Gauge link for TMDs

$$\Phi_{ij}(x, \mathbf{p_T}) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) U_{[0,\xi]} \psi_i(\xi) | P \rangle \bigg|_{\xi^+ = 0}$$

Gauge link for TMDs

$$\Phi_{ij}(x, p_T) = \int \frac{d\xi^- d^2 \xi_T}{8\pi^3} e^{ip \cdot \xi} \langle P | \bar{\psi}_j(0) U_{[0,\xi]} \psi_i(\xi) | P \rangle \Big|_{\xi^+ = 0}$$
SIDIS
$$U_{[+]}$$

Gauge link for TMDs

Gauge link and (naive) T-odd functions

- Time reversal determines whether the gauge link goes to + or infinity
- In the collinear case, where the gauge link turns out to be the same, this means that a certain class of PDFs (called "T-odd" or "naive T-odd") has to vanish
- In the TMD case, however, the gauge links are different and this means that it is possible to have T-odd functions (Boer-Mulders and Sivers)

Key point

- Gauge links have a staple-like shape
- Different processes have different gauge links
- Gauge links are there also for collinear PDFs, but they are "trivial" and universal
- The difference in the gauge links makes it possible to have T-odd TMDs

Basic ideas about factorization

Factorization for Drell-Yan

Figure 3.1: (a) Graphical structure corresponding to leading regions in Drell-Yan scattering, before factorization. Green gluons are collinear to lines in the *A*-blob, red gluons are collinear to lines in the *B*-blob, and blue gluons have nearly zero momentum (soft). (b) Separation into hard, soft, and collinear parts after approximations and Ward identities—see Sec. 3.2.5.

Factorization for Drell-Yan

$$\frac{\mathrm{d}\sigma^{\mathrm{W}}}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^{2}\mathbf{q}_{T}} = \sum_{\mathrm{flavors}\ i} H_{i\bar{i}}(Q^{2},\mu) \int \mathrm{d}^{2}\mathbf{b}_{T} \, e^{i\mathbf{b}_{T}\cdot\mathbf{q}_{T}} \, \tilde{f}_{i/p}(x_{a},\mathbf{b}_{T},\mu,\zeta_{a}) \, \tilde{f}_{\bar{i}/p}(x_{b},\mathbf{b}_{T},\mu,\zeta_{b})$$

$$\begin{aligned} F_{UU,T}(x,z,P_{h\perp}^2,Q^2) &= \mathcal{C}'\big[f_1D_1\big] \\ &= H(Q^2,\mu^2) \int d^2 \boldsymbol{p}_T \, d^2 \boldsymbol{k}_T \, d^2 \boldsymbol{l}_T \, \delta^{(2)} \big(\boldsymbol{p}_T - \boldsymbol{k}_T + \boldsymbol{l}_T - \boldsymbol{P}_{h\perp}/z\big) \\ &\quad x \sum_a e_a^2 \, f_1^a(x,p_T^2,\mu^2,\zeta) \, D_1^a(z,k_T^2,\mu^2,\zeta_h) \, U(l_T^2,\mu^2,\zeta\zeta_h) \end{aligned}$$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{q}(Q^{2}, \mu) \int db_{T} b_{T} J_{0}(b_{T} |\boldsymbol{P}_{h\perp}|) \hat{f}_{1}^{q}(x, z^{2} b_{\perp}^{2}; \mu, \zeta) \hat{D}_{1}^{a \to h}(z, b_{\perp}^{2}; \mu, \zeta_{h})$$

$$F_{UU,T}(x, z, \boldsymbol{P}_{hT}^{2}, Q^{2}) = x \sum_{a} \mathcal{H}_{UU,T}^{q}(Q^{2}, \mu) \int db_{T} b_{T} J_{0}(b_{T} | \boldsymbol{P}_{h\perp} |) \hat{f}_{1}^{q}(x, z^{2} b_{\perp}^{2}; \mu, \zeta) \hat{D}_{1}^{a \to h}(z, b_{\perp}^{2}; \mu, \zeta_{h})$$
renormalized TMD PDF
renormalized TMD FF

The parton-model results are still valid, but we the additional dependence on two scales and the addition of a hard factor

One loop analysis (quark-in-quark case)

(v1)

(v2)

(v3)

Separation into various regions

Factorization breaking in pp collisions

Rogers, Mulders, arXiv:1001.2977

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{T}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$\mathcal{M}_{S} = 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} \frac{-i}{(2k^{+}k^{-}-\mathbf{k}_{T}^{2}+i0)} \frac{1}{(k^{+}-i0)(-k^{-}+i0)}$$

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{T}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$\mathcal{M}_{S} = 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} \frac{-i}{(2k^{+}k^{-}-\mathbf{k}_{T}^{2}+i0)} \frac{1}{(k^{+}-i0)(-k^{-}+i0)} \frac{1}{k^{2}+i0} \rightarrow 2\operatorname{Im}\left(\frac{1}{k^{2}+i0}\right) = -2\pi i\theta(k^{0})\delta(k^{2}) \equiv -2\pi i\delta_{+}(k^{2}).$$

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{T}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$\begin{split} \mathcal{M}_{S} &= 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} \frac{-i}{(2k^{+}k^{-}-\mathbf{k}_{T}^{2}+i0)} \frac{1}{(k^{+}-i0)(-k^{-}+i0)} \\ &= 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} (2\pi)\delta_{+}(k^{2}) \frac{1}{k^{+}k^{-}} \\ &= \frac{g_{0}^{2}C_{F}}{\pi} \int \frac{\mathrm{d}^{2-2\epsilon}\mathbf{k}_{T}}{(2\pi)^{d-2}} \frac{e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}} \,. \end{split}$$

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{T}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$\mathcal{M}_{S} = 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} \frac{-i}{(2k^{+}k^{-}-\mathbf{k}_{T}^{2}+i0)} \frac{1}{(k^{+}-i0)(-k^{-}+i0)}$$

$$= 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} (2\pi)\delta_{+}(k^{2}) \frac{1}{k^{+}k^{-}}$$

$$= \frac{g_{0}^{2}C_{F}}{\pi} \int \frac{\mathrm{d}^{2-2\epsilon}\mathbf{k}_{T}}{(2\pi)^{d-2}} \frac{e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}}.$$
UV and IR divergences

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{T}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$\mathcal{M}_{S} = 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} \frac{-i}{(2k^{+}k^{-}-\mathbf{k}_{T}^{2}+i0)} \frac{1}{(k^{+}-i0)(-k^{-}+i0)}$$

$$= 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} (2\pi)\delta_{+}(k^{2}) \frac{1}{k^{+}k^{-}}$$

$$= \frac{g_{0}^{2}C_{F}}{\pi} \int \frac{\mathrm{d}^{2-2\epsilon}\mathbf{k}_{T}}{(2\pi)^{d-2}} \frac{e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k_{T}^{-}} \cdot$$
rapidity divergence
UV and IR divergences

Figure 2.3: One-loop contributions to the soft function, with mirror diagrams obtained by a left-right swap of the exchanged gluon not shown. The double lines denote the Wilson lines from the transverse positions $\mathbf{0}_{T}$ and \mathbf{b}_{T} stretching to light-cone infinity as indicated. The red line denotes the on-shell cut. Diagram (a) is scaleless and vanishes in pure dimensional regularization.

$$\mathcal{M}_{S} = 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} \frac{-i}{(2k^{+}k^{-} - \mathbf{k}_{T}^{2} + i0)} \frac{1}{(k^{+} - i0)(-k^{-} + i0)} = 2g_{0}^{2}C_{F} \int \frac{\mathrm{d}^{d}k}{(2\pi)^{d}} e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}} (2\pi)\delta_{+}(k^{2}) \frac{1}{k^{+}k^{-}} = \frac{g_{0}^{2}C_{F}}{\pi} \int \frac{\mathrm{d}^{2-2\epsilon}\mathbf{k}_{T}}{(2\pi)^{d-2}} \frac{e^{i\mathbf{b}_{T}\cdot\mathbf{k}_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k_{T}^{-}} \cdot \mathbf{rapidity divergence} \qquad y_{k} = \frac{1}{2} \ln \frac{k^{+}}{k^{-}}$$
UV and IR divergences

Soft factor

regulate the rapidity divergence (different prescriptions are used)

$$\int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}} \to w^{2} \left(\frac{\nu}{\sqrt{2}}\right)^{\tau} \int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}} \left|\frac{\mathbf{k}_{T}^{2}}{2k^{-}} - k^{-}\right|^{-\tau} = \frac{\nu^{\tau} k_{T}^{-\tau}}{2^{\tau} \sqrt{\pi}} \Gamma\left(\frac{1}{2} - \frac{\tau}{2}\right) \Gamma\left(\frac{\tau}{2}\right)$$

Soft factor

regulate the rapidity divergence (different prescriptions are used)

$$\int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}} \to w^{2} \left(\frac{\nu}{\sqrt{2}}\right)^{\tau} \int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}} \left|\frac{\mathbf{k}_{T}^{2}}{2k^{-}} - k^{-}\right|^{-\tau} = \underbrace{\frac{\nu^{\tau} k_{T}^{-\tau}}{2^{\tau} \sqrt{\pi}}}_{rapidity \, scale, \, most \, often \, denoted \, by \, \sqrt{\zeta}$$

Soft factor

regulate the rapidity divergence (different prescriptions are used)

$$\int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}} \to w^{2} \left(\frac{\nu}{\sqrt{2}}\right)^{\tau} \int_{0}^{\infty} \frac{\mathrm{d}k^{-}}{k^{-}} \left|\frac{\mathbf{k}_{T}^{2}}{2k^{-}} - k^{-}\right|^{-\tau} = \underbrace{\frac{\nu^{\tau} k_{T}^{-\tau}}{2^{\tau} \sqrt{\pi}}}_{rapidity \, scale, \, most \, often \, denoted \, by \, \sqrt{\zeta}$$

$$\tilde{S}_{q}^{0(1)}(b_{T},\epsilon,\tau) = \frac{\alpha_{s}(\mu)C_{F}}{2\pi} \left[\frac{2}{\epsilon^{2}} + 4\left(\frac{1}{\epsilon} + L_{b}\right) \left(-\frac{1}{\tau} + \ln\frac{\mu}{\nu} \right) - L_{b}^{2} - \frac{\pi^{2}}{6} \right] + O(\tau) + O(\epsilon) \,. \tag{2.77}$$

Renormalized TMD for quark-in-quark

The final "renormalized" or subtracted TMD depends on two arbitrary scales, introduced in the procedure of regularizing the divergences.

The physical TMDs will be of course different from the perturbative ones, but the dependence on these two scales should be the same as the perturbative

The final "renormalized" or subtracted TMD depends on two arbitrary scales, introduced in the procedure of regularizing the divergences.

The physical TMDs will be of course different from the perturbative ones, but the dependence on these two scales should be the same as the perturbative

$$\tilde{f}_{q'/q}^{(1)}(x, b_T, \mu, \zeta) = \delta_{q'q} \delta(1-x) + \delta_{q'q} \frac{\alpha_S(\mu)C_F}{2\pi} \left[-\left(\frac{1}{\epsilon} + L_b\right) [P_{qq}(x)]_+ + (1-x) + \delta(1-x)\left(-\frac{L_b^2}{2} + L_b\left(\frac{3}{2} + \ln\frac{\mu^2}{\zeta}\right) - \frac{\pi^2}{12}\right) \right]$$

slightly corrected version of Eq. (2.81)

The final "renormalized" or subtracted TMD depends on two arbitrary scales, introduced in the procedure of regularizing the divergences.

The physical TMDs will be of course different from the perturbative ones, but the dependence on these two scales should be the same as the perturbative

$$\tilde{f}_{q'/q}^{(1)}(x, b_T, \mu, \zeta) = \delta_{q'q} \delta(1-x) + \delta_{q'q} \frac{\alpha_S(\mu)C_F}{2\pi} \left[-\left(\frac{1}{\epsilon} + L_b\right) [P_{qq}(x)]_+ + (1-x) + \delta(1-x)\left(-\frac{L_b^2}{2} + L_b\left(\frac{3}{2} + \ln\frac{\mu^2}{\zeta}\right) - \frac{\pi^2}{12}\right) \right]$$

slightly corrected version of Eq. (2.81)

$$L_b = \ln \frac{\mathbf{b}_T^2 \mu^2}{b_0^2}$$
, with $b_0 = 2e^{-\gamma_E}$

Rapidity scale dependence

$$\begin{split} \tilde{f}_{q'/q}^{(1)}(x, b_T, \mu, \zeta) &= \delta_{q'q} \delta(1-x) + \delta_{q'q} \frac{\alpha_S(\mu) C_F}{2\pi} \bigg[-\bigg(\frac{1}{\epsilon} + L_b\bigg) [P_{qq}(x)]_+ + (1-x) \\ &+ \delta(1-x) \bigg(-\frac{L_b^2}{2} + L_b \bigg(\frac{3}{2} + \ln\frac{\mu^2}{\zeta}\bigg) - \frac{\pi^2}{12} \bigg) \bigg] \\ L_b &= \ln\frac{\mu^2 b_T^2}{b_0^2} \qquad b_0 = 2e^{-\gamma_E} = 1.123 \text{ GeV}^{-1} \end{split}$$

$$\frac{d\ln\tilde{f}^{(1)}}{d\ln\sqrt{\zeta}} = -\frac{\alpha_{S}(\mu)C_{F}}{\pi}\ln\frac{\mu^{2}\boldsymbol{b}_{T}^{2}}{b_{0}^{2}} \equiv \tilde{K} \equiv \gamma_{\zeta}$$
$$\frac{d\tilde{K}}{d\ln\mu} = -\frac{2\alpha_{S}(\mu)C_{F}}{\pi} \equiv -\gamma_{K} \equiv -2\Gamma_{\text{cusp}}$$

Collins-Soper kernel or rapidity anomalous dimension

Cusp anomalous dimension

UV scale dependence

$$\begin{split} \tilde{f}_{q'/q}^{(1)}(x, b_T, \mu, \zeta) &= \delta_{q'q} \delta(1-x) + \delta_{q'q} \frac{\alpha_S(\mu) C_F}{2\pi} \bigg[-\left(\frac{1}{\epsilon} + L_b\right) [P_{qq}(x)]_+ + (1-x) \\ &+ \delta(1-x) \bigg(-\frac{L_b^2}{2} + L_b \bigg(\frac{3}{2} + \ln\frac{\mu^2}{\zeta}\bigg) - \frac{\pi^2}{12} \bigg) \bigg] \\ L_b &= \ln\frac{\mu^2 \boldsymbol{b}_T^2}{b_0^2} \qquad b_0 = 2e^{-\gamma_E} = 1.123 \text{ GeV}^{-1} \end{split}$$

$$\frac{d\ln\tilde{f}^{(1)}}{d\ln\sqrt{\zeta}} = -\frac{\alpha_{S}(\mu)C_{F}}{\pi}\ln\frac{\mu^{2}b_{T}^{2}}{b_{0}^{2}} \equiv \tilde{K} \equiv \gamma_{\zeta} \qquad \begin{array}{l} \text{Collins-Sope}\\ \text{or rapidity an} \end{array}$$

$$\frac{d\tilde{K}}{d\ln\mu} = -\frac{2\alpha_{S}(\mu)C_{F}}{\pi} \equiv -\gamma_{K} \equiv -2\Gamma_{\text{cusp}} \qquad \begin{array}{l} \text{Cusp an}\\ \text{UV an} \end{array}$$

$$\frac{d\ln\tilde{f}^{(1)}}{d\ln\mu} = \frac{\alpha_{S}(\mu)C_{F}}{\pi} \left(\ln\frac{\mu^{2}}{\zeta} + \frac{3}{2}\right) = \Gamma_{\text{cusp}}\ln\frac{\mu^{2}}{\zeta} + \gamma_{F} \equiv \gamma_{q} \equiv \gamma_{\mu}$$

Collins-Soper kernel or rapidity anomalous dimension

Cusp anomalous dimension

UV anomalous dimension

TMD two-scale evolution

rapidity evolution

UV evolution

$$\tilde{f}_{i/P}(x, \mathbf{b}_T, \mu, \zeta) = \tilde{f}_{i/P}(x, \mathbf{b}_T, \mu_0, \zeta_0) \exp\left\{\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_q \left[\alpha_s(\mu'); \zeta_0/\mu'^2\right]\right\} \exp\left\{\tilde{K}(b_T; \mu) \ln \sqrt{\frac{\zeta}{\zeta_0}}\right\},$$
(4.17)

$$\tilde{f}_{i/P}(x, \mathbf{b}_T, \mu, \zeta) = \tilde{f}_{i/P}(x, \mathbf{b}_T, \mu_0, \zeta_0) \exp\left\{\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_q \left[\alpha_s(\mu'); \zeta_0/\mu'^2\right]\right\} \exp\left\{\tilde{K}(b_T; \mu) \ln \sqrt{\frac{\zeta}{\zeta_0}}\right\},$$
(4.17)

$$\tilde{f}_{i/P}(x, \mathbf{b}_T, \mu, \zeta) = \tilde{f}_{i/P}(x, \mathbf{b}_T, \mu_0, \zeta_0) \exp\left\{\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_q \left[\alpha_s(\mu'); \zeta_0/\mu'^2\right]\right\} \exp\left\{\tilde{K}(b_T; \mu) \ln \sqrt{\frac{\zeta}{\zeta_0}}\right\},$$
(4.17)

$$LL \qquad \alpha_S^n \ln^{2n} \left(\frac{\mu^2}{\mu_0^2}\right)$$

$$\tilde{f}_{i/P}(x, \mathbf{b}_T, \mu, \zeta) = \tilde{f}_{i/P}(x, \mathbf{b}_T, \mu_0, \zeta_0) \exp\left\{\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_q \left[\alpha_s(\mu'); \zeta_0/\mu'^2\right]\right\} \exp\left\{\tilde{K}(b_T; \mu) \ln \sqrt{\frac{\zeta}{\zeta_0}}\right\},$$
(4.17)

$$LL \quad \alpha_S^n \ln^{2n} \left(\frac{\mu^2}{\mu_0^2}\right)$$
$$NLL \quad \alpha_S^n \ln^{2n} \left(\frac{\mu^2}{\mu_0^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{\mu^2}{\mu_0^2}\right)$$

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

$$\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu} \left(\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu}\right)} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}}\right)^{K_{\text{resum}}}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

$$\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu} \left(\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu}\right)} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}}\right)^{K_{\text{resum}}}$$

 $\mu_b = \frac{2e^{-\gamma_E}}{b_T}$

<u>see, e.g., Collins, "Foundations of Perturbative QCD" (11)</u> <u>TMD collaboration, "TMD Handbook," arXiv:2304.03302</u>

$$\begin{split} \hat{f}_{1}^{a}(x,|\boldsymbol{b}_{T}|;\boldsymbol{\mu},\boldsymbol{\zeta}) &= \int d^{2}\boldsymbol{k}_{\perp} \, e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}} \, f_{1}^{a}(x,\boldsymbol{k}_{\perp}^{2};\boldsymbol{\mu},\boldsymbol{\zeta}) \\ & \text{perturbative} \\ \text{Sudakov form factor} \\ \hat{f}_{1}^{a}(x,b_{T}^{2};\boldsymbol{\mu}_{f},\boldsymbol{\zeta}_{f}) &= [C \otimes f_{1}](x,\boldsymbol{\mu}_{b_{*}}) \, e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu} \left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)} \left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text{resum}}} \\ & \mu_{b} &= \frac{2e^{-\gamma_{E}}}{b_{T}} \\ & \text{matching} \\ & \text{(perturbative)} \\ \end{split}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302

$$\begin{split} \hat{f}_{1}^{a}(x, |\boldsymbol{b}_{T}|; \boldsymbol{\mu}, \boldsymbol{\zeta}) &= \int d^{2}\boldsymbol{k}_{\perp} e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}} f_{1}^{a}(x, \boldsymbol{k}_{\perp}^{2}; \boldsymbol{\mu}, \boldsymbol{\zeta}) \\ & \text{perturbative} \\ \text{Sudakov form factor} \\ \hat{f}_{1}^{a}(x, b_{T}^{2}; \boldsymbol{\mu}_{f}, \boldsymbol{\zeta}_{f}) &= [C \otimes f_{1}](x, \boldsymbol{\mu}_{b_{*}}) e^{\int_{\boldsymbol{\mu}_{b_{*}}}^{\boldsymbol{\mu}_{f}} \frac{d\boldsymbol{\mu}}{\boldsymbol{\mu}} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\boldsymbol{\mu}}\right)} \left(\frac{\sqrt{\zeta_{f}}}{\boldsymbol{\mu}_{b_{*}}}\right)^{K_{\text{resum}}} \\ & \text{collinear PDF} \\ \mu_{b} &= \frac{2e^{-\gamma_{E}}}{b_{T}} \\ \mu_{b^{*}} &= \frac{2e^{-\gamma_{E}}}{b_{T}} \\ \mu_{b^{*}} &= \frac{2e^{-\gamma_{E}}}{b_{*}} \end{aligned}$$
 (perturbative) (perturbative)

<u>see, e.g., Collins, "Foundations of Perturbative QCD" (11)</u> <u>TMD collaboration, "TMD Handbook," arXiv:2304.03302</u>

$$\hat{f}_{1}^{a}(x, |\boldsymbol{b}_{T}|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^{2}\boldsymbol{k}_{\perp} e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}} f_{1}^{a}(x, \boldsymbol{k}_{\perp}^{2}; \boldsymbol{\mu}, \boldsymbol{\zeta})$$
perturbative
Sudakov form factor
$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \boldsymbol{\mu}_{f}, \boldsymbol{\zeta}_{f}) = [C \otimes f_{1}](x, \boldsymbol{\mu}_{b_{*}}) e^{\int_{\boldsymbol{\mu}_{b_{*}}}^{\boldsymbol{\mu}_{f}} \frac{d\boldsymbol{\mu}}{\boldsymbol{\mu}} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta}_{f}}{\boldsymbol{\zeta}_{\mu}}\right)} \left(\frac{\sqrt{\zeta}_{f}}{\boldsymbol{\mu}_{b_{*}}}\right)^{K_{\text{resum}}} f_{1NP}(x, b_{T}^{2}; \boldsymbol{\zeta}_{f}, Q_{0})$$

$$\mu_{b} = \frac{2e^{-\gamma_{E}}}{b_{T}} \quad \text{matching} \quad (\text{perturbative and} \quad \text{of TMD} \\ \text{coefficients} \quad \text{nonperturbative})$$

$$(\text{perturbative})$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11) TMD collaboration, "TMD Handbook," arXiv:2304.03302 What about extractions?

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

		U	L	Т
pol.	U	f_1		h_1^\perp
nucleon	L		g_{1L}	h_{1L}^{\perp}
nucl	Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

quark pol.

 h_1, h_{1T}^{\perp}

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

 Very good knowledge of x dependence of f₁ and g_{1L}

 $\begin{array}{|c|c|c|c|c|} U & L & T \\ \hline U & f_1 & & h_1^{\perp} \\ \hline L & & g_{1L} & h_{1L}^{\perp} \end{array}$

 g_{1T}

 f_{1T}^{\perp}

Т

nucleon pol.

quark pol.

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

37

		U	L	Т
pol.	U	f_1		h_1^\perp
leon	L		g_{1L}	h_{1L}^{\perp}
nucleon	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

quark pol.

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f₁ and g_{1L}
- Good knowledge of the k_T dependence of f₁ (also for pions)

		U	L	Т
pol.	U	f_1		h_1^\perp
nucleon	L		g_{1L}	h_{1L}^{\perp}
nuc	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

quark pol.

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f₁ and g_{1L}
- Good knowledge of the k_T dependence of f₁ (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)

		U	L	Т
pol.	U	f_1		h_1^\perp
nucleon	L		g_{1L}	h_{1L}^{\perp}
nuc	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

quark pol.

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

- Very good knowledge of x dependence of f₁ and g_{1L}
- Good knowledge of the k_T dependence of f₁ (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)
- Some hints about all others

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u> <u>Bacchetta, Mulders, Pijlman, hep-ph/0405154</u> <u>Goeke, Metz, Schlegel, hep-ph/0504130</u>

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u> <u>Bacchetta, Mulders, Pijlman, hep-ph/0405154</u> <u>Goeke, Metz, Schlegel, hep-ph/0504130</u>

 Lots of progress from the theory side

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of g_T
 x-dependence

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd <u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u> <u>Bacchetta, Mulders, Pijlman, hep-ph/0405154</u> <u>Goeke, Metz, Schlegel, hep-ph/0504130</u>

- Lots of progress from the theory side
- Some knowledge of g_T
 x-dependence
- First hints about e x-dependence

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd <u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u> <u>Bacchetta, Mulders, Pijlman, hep-ph/0405154</u> <u>Goeke, Metz, Schlegel, hep-ph/0504130</u>

- Lots of progress from the theory side
- Some knowledge of g_T
 x-dependence
- First hints about e x-dependence
- All others unknown

Mulders, Rodrigues, PRD63, 2001

Mulders, Rodrigues, PRD63, 2001

			Siuon	pon.
		U	L	linear
pol.	U	f_1^g		$h_1^{\perp g}$
nucleon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc]	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

gluon pol

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd Good knowledge of x-dependence of f_1 and g_{1L}

Mulders, Rodrigues, PRD63, 2001

			8 ¹⁴⁰ 11	
		U	L	linear
pol.	U	f_1^g		$h_1^{\perp g}$
nucleon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc]	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

gluon pol.

- Good knowledge of
 x-dependence of f₁ and g_{1L}
- Some hints on the k_T dependence of f₁

Mulders, Rodrigues, PRD63, 2001

			8 ¹⁴⁰ 11	
		U	L	linear
pol.	U	f_1^g		$h_1^{\perp g}$
nucleon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc]	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

gluon pol.

- Good knowledge of
 x-dependence of f₁ and g_{1L}
- Some hints on the k_T dependence of f₁

"Old" fits for unpolarized TMD f_1

	Framewor k	HERMES	COMPASS	DY	Z production	N of points
KN 2006 <u>hep-ph/0506225</u>	NLL'	×	×	~		98
Pavia 2013 <u>arXiv:1309.3507</u>	LO		×	×	*	1538
Torino 2014 <u>arXiv:1312.6261</u>	LO	(separately)	(separately)	×	×	576 (H) 6284 (C)
DEMS 2014 <u>arXiv:1407.3311</u>	NNLL'	*	×	~		223
EIKV 2014 arXiv:1401.5078	NLL	1 (x,Q²) bin	1 (x,Q²) bin	~		500 (?)
SIYY <u>arXiv:1406.3073</u>	NLL'	qualitative	qualitative	~		140
Pavia 2017 arXiv:1703.10157	NLL	~	~	~	~	8059
SV 2017 <u>arXiv:1706.01473</u>	NNLL'	×	×	~		309

2017: the dawn of TMD global fits era

Available fits for unpolarized TMD f_1

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	χ²/N _{points}
Pavia 2017 <u>arXiv:1703.10157</u>	NLL	~	~	~	~	8059	1.55
SV 2019 arXiv:1912.06532	N ³ LL-	~	~	~	~	1039	1.06
MAP22 <u>arXiv:2206.07598</u>	N ³ LL-	~	~	~	~	2031	1.06
ART23 <u>arXiv:2305.07473</u>	N4LL-			~	~	627	0.96

Comparison with PDFs

x-Q² coverage

MAP Collaboration Bacchetta, Bertone, Bissolotti,

<u>Scimemi, Vladimirov,</u> <u>arXiv:1912.06532</u>

x-Q² coverage

MAP Collaboration Bacchetta, Bertone, Bissolotti,

<u>Scimemi, Vladimirov,</u> <u>arXiv:1912.06532</u>

Available tools

https://github.com/MapCollaboration/NangaParbat

see Matteo's cooking session

git clone git@github.com:MapCollaboration/NangaParbat.git

Available tools: artemide

https://teorica.fis.ucm.es/artemide/

Available tools: TMDlib and TMDplotter

https://tmdlib.hepforge.org

TMD plotte	TMD plotter — Density as a function of k _t					
Home	TMD PDF	Luminosity	New PDFs	Publications	HEP Links	
Parameters X-axis: min = 0.1 Y-axis: min = 0.00 ratio: min = 0.4 Curves 1. down \bullet 1 μ = 2	max = 1.6	GeV Iog IIn Iog IIn Iog Iin	down, Pf	B-NLO-HEFAI+II-2018-set1, x = 0	1 TMDptpter 2,22 1 k, [GeV]	

Backup slides

Ingredients and accuracy

Accuracy
LL
NLL
NLL'
NNLL
NNLL'
N ³ LL

$K \text{ and } \gamma_F$	γ_K	α_s evolution
_	1	_
1	2	LO
1	2	NLO
2	3	NLO
2	3	NNLO
3	4	NNLO

TMD Handbook

119

$\gamma_K\left(\alpha_s(\mu)\right)$	$\beta[\alpha_s(\mu)]$	$\gamma_q \left(\alpha_s(\mu); 1 \right)$	$ ilde{K}(ar{b}_T;1/ar{b}_T)$	$ ilde{C}_{j/j'}$	accuracy	accuracy (SCET)
				0	QPM	
1	1			0	LO-LL	LL
2	2	1	1	0	LO-NLL	NLL
3	3	2	2	0	LO-NNLL	
2	2	1	1	1	NLO-NLL	NLL'
3	3	2	2	1	NLO-NNLL	NNLL
3	3	2	2	2	NNLO-NNLL	NNLL′
4	4	3	3	2	NNLO-N ³ LL	N ³ LL
4	4	3	3	3	N ³ LO-N ³ LL	N ³ LL′

Table 4.2: Orders of accuracy needed for evolution of TMD PDFs and other ingredients entering the

$$\tilde{f}_{i/p}(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}) = \sum_{j} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \, \tilde{C}_{i/j}(x/\hat{x}, b_{T}; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}(\mu_{b_{*}})) \, f_{j/p}(\hat{x}; \mu_{b_{*}}) + O((m \, b_{*}(b_{T}))^{p}) \,.$$

$$(4.30)$$

 $\tilde{f}_{i/p}(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}) = \sum_{j} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \, \tilde{C}_{i/j}(x/\hat{x}, b_{T}; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}(\mu_{b_{*}})) \, f_{j/p}(\hat{x}; \mu_{b_{*}}) + O((m \, b_{*}(b_{T}))^{p}) \, .$

(4.30)

$$\tilde{f}_{i/p}(x, \mathbf{b}_{*}, \mu_{b_{*}}, \mu_{b_{*}}^{2}) = \sum_{j} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \tilde{C}_{i/j}(x/\hat{x}, b_{T}; \mu_{b_{*}}, \mu_{b_{*}}^{2}, \alpha_{s}(\mu_{b_{*}})) f_{j/p}(\hat{x}; \mu_{b_{*}}) + O((m \ b_{*}(b_{T}))^{p}).$$
(4.30)

$$\tilde{f}_{i/p}(x, \mathbf{b}_*, \mu_{b_*}, \mu_{b_*}^2) = \sum_j \int_x^1 \frac{d\hat{x}}{\hat{x}} \, \tilde{C}_{i/j}(x/\hat{x}, b_T; \mu_{b_*}, \mu_{b_*}^2, \alpha_s(\mu_{b_*})) \, f_{j/p}(\hat{x}; \mu_{b_*}) + O((m \, b_*(b_T))^p) \, .$$

(4.30)

The leading high-transverse momentum part is just the "tail" of the leading low-transverse-momentum part

Ingredients and accuracy

Accuracy	H and C	$K \text{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	-	1	_
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO