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Plan of the lectures

✓Review the idea of structure functions for DIS and introduce them for semi-
inclusive DIS


• Introduce the idea of quark-quark correlation functions 


• Parametrize correlation functions in terms of PDFs or Transverse Momentum 
Distributions (TMDs)


• Obtain the expression of structure functions for semi-inclusive DIS in terms of 
TMDs 


• Discuss concept of TMD factorization and TMD evolution


• Discuss a bit of phenomenology
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Transverse Momentum Distributions



About names and acronyms

• TMD as an adjective stands for Transverse Momentum Dependent 


• TMD as a noun stands for Transverse Momentum Distribution and it is usually 
meant to encompass both transverse-momentum-dependent PDFs and 
Fragmentation Functions (FFs)
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DIS cross section in terms of structure functions
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Hadronic tensor in terms of correlation function
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This is the result, then we are going to motivate it



Hadronic tensor in terms of correlation function
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Quark correlator

This is the result, then we are going to motivate it
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Let us first introduce the integrated quark-quark correlator

�q
ji(x, S) =

Z
d⇠�

2⇡
e�ik·⇠⌦P, S  ̄̄q

i (⇠)U
n�
(⇠,+1) U

n�
(+1,0)  

q
j (0) P, S

↵����
⇠+=⇠T=0, k+=xP+

=
X

X

Z
2⇡

d4PX

(2⇡)4
�
�
P 2
X

�
✓
�
P 0
X

� Z d⇠�

2⇡
e�ik·⇠⌦P, S  ̄̄q

i (⇠)U
n�
(⇠,+1) X

↵⌦
X Un�

(+1,0)  
q
j (0) P, S

↵ (1)

where we have the Wilson lines

Un�
(0,+1) = Un�(0�,1�;0T ) UT (0T ,1T ;1�), (2)

Un�
(+1,⇠) = UT (1T , ⇠T ;1�) Un�(1�, ⇠�, ⇠T ). (3)

Here Un�(a�, b�; cT ) indicates a Wilson line running along the minus direction from [a�, 0+, cT ] to [b�, 0+, cT ], while
UT (aT , bT ; c�) indicates a Wilson line running in the transverse direction from [c�, 0+,aT ] to [c�, 0+, bT ], i.e.
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The correlator in Eq. (??) is the one appearing in semi-inclusive DIS. In di↵erent processes the structure of the gauge
link can change [? ? ? ? ]. For instance, in Drell-Yan lepton pair production all occurrences of 1� in the gauge
links should be replaced by �1�. In particular, this reverses the sign of all T-odd distribution functions appearing in
the correlator (see below). In partonic processes with colored states in both the initial and final state, the gauge link
contains contributions running to 1� as well as �1�, and T-odd terms di↵er by more than a simple sign change.

The unpolarized PDF f1 is defined as
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Let us compute the “perturbative” f1 for a quark in a quark. For a free quark, we have

P, S
↵
= a†(P ) 0

↵
. (8)

At order ↵0
S , the Wilson line is just 1, the correlator is simply
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We now consider the order ↵S corrections. We have to take into account all the diagrams shown in the figure: three
virtual diagrams and their Hermitean conjugate, three real diagrams and their Hermitean conjugate.

Diagram (v1) contains the quark self-energy diagram. It has been calculated in many ways in the literature. The
crucial part in the calculation is the term (see, e.g., Eq. (2.4.36) in Field, or Eq. (7.16) of Peskin–Schroeder)
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In this expression there are both IR and UV divergences. Both types of divergences can be regulated with Dimensional
Regularization (DR) (see, e.g., Field, Sec. 2.9). Peskin–Schroeder use a photon mass to regulate the IR divergences



Just a reminder: fermion fields
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Quark-in-a-quark case
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Quark-in-quark case
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In this expression there are both IR and UV divergences. Both types of divergences can be regulated with Dimensional
Regularization (DR) (see, e.g., Field, Sec. 2.9). Peskin–Schroeder use a photon mass to regulate the IR divergences

June 14, 2023 1

Let us first introduce the integrated quark-quark correlator

�q
ji(x, S) =

Z
d⇠�

2⇡
e�ik·⇠⌦P, S  ̄̄q

i (⇠)U
n�
(⇠,+1) U

n�
(+1,0)  

q
j (0) P, S

↵����
⇠+=⇠T=0, k+=xP+

=
X

X

Z
2⇡

d4PX

(2⇡)4
�
�
P 2
X

�
✓
�
P 0
X

� Z d⇠�

2⇡
e�ik·⇠⌦P, S  ̄̄q

i (⇠)U
n�
(⇠,+1) X

↵⌦
X Un�

(+1,0)  
q
j (0) P, S

↵ (1)

where we have the Wilson lines

Un�
(0,+1) = Un�(0�,1�;0T ) UT (0T ,1T ;1�), (2)

Un�
(+1,⇠) = UT (1T , ⇠T ;1�) Un�(1�, ⇠�, ⇠T ). (3)

Here Un�(a�, b�; cT ) indicates a Wilson line running along the minus direction from [a�, 0+, cT ] to [b�, 0+, cT ], while
UT (aT , bT ; c�) indicates a Wilson line running in the transverse direction from [c�, 0+,aT ] to [c�, 0+, bT ], i.e.

Un�(a�, b�; cT ) = P exp


�ig

Z b�

a�
d⇣�A+(⇣�, 0+, cT )

�
, (4)

UT (aT , bT ; c
�) = P exp


�ig

Z bT

aT

d⇣T ·AT (c
�, 0+, ⇣T )

�
. (5)

The correlator in Eq. (??) is the one appearing in semi-inclusive DIS. In di↵erent processes the structure of the gauge
link can change [? ? ? ? ]. For instance, in Drell-Yan lepton pair production all occurrences of 1� in the gauge
links should be replaced by �1�. In particular, this reverses the sign of all T-odd distribution functions appearing in
the correlator (see below). In partonic processes with colored states in both the initial and final state, the gauge link
contains contributions running to 1� as well as �1�, and T-odd terms di↵er by more than a simple sign change.

The unpolarized PDF f1 is defined as

f1(x) = �[n/�](x) ⌘ 1

2
Tr

⇥
�n/�

⇤
(6)

so that

fq
1 (x) =

1

2

Z
d⇠�

2⇡
e�ik+⇠�

⌦
P, S  ̄̄q

i (⇠
�, 0+,~0?)Un�

(⇠�,+1�)

�
n/�

�
ij
Un�
(+1�,0�)  

q
j (0

�, 0+,~0?) P, S
↵
. (7)

Let us compute the “perturbative” f1 for a quark in a quark. For a free quark, we have

P, S
↵
= c†(P ) 0

↵
. (8)

At order ↵0
S , the Wilson line is just 1, the correlator is simply

�q
ji(x, S) =

Z
d⇠�

2⇡
e�ip·⇠⌦P, S  ̄̄q

i (⇠) 
q
j (0) P, S

↵����
⇠+=⇠T=0, p+=xP+

(9)

and we obtain

fq
1 (x) =

1

2

Z
d⇠�

2⇡
e�i(xP+�P+)⇠� Tr

h1
2

X
u(P )u(P )n/�

i
= �(xP+ � P+)P+ = �(1� x) (10)

We now consider the order ↵S corrections. We have to take into account all the diagrams shown in the figure: three
virtual diagrams and their Hermitean conjugate, three real diagrams and their Hermitean conjugate.

Diagram (v1) contains the quark self-energy diagram. It has been calculated in many ways in the literature. The
crucial part in the calculation is the term (see, e.g., Eq. (2.4.36) in Field, or Eq. (7.16) of Peskin–Schroeder)

�i⌃(p) = �g2CF

Z
d4k

(2⇡)4
�↵

p/� k/+m

(p� k)2 �m2 + i✏
��

1

k2 + i✏

✓
g↵� + ⌘

k↵k�
k2

◆
(11)

In this expression there are both IR and UV divergences. Both types of divergences can be regulated with Dimensional
Regularization (DR) (see, e.g., Field, Sec. 2.9). Peskin–Schroeder use a photon mass to regulate the IR divergences

June 14, 2023 1

Let us first introduce the integrated quark-quark correlator

�q
ji(x, S) =

Z
d⇠�

2⇡
e�ik·⇠⌦P, S  ̄̄q

i (⇠)U
n�
(⇠,+1) U

n�
(+1,0)  

q
j (0) P, S

↵����
⇠+=⇠T=0, k+=xP+

=
X

X

Z
2⇡

d4PX

(2⇡)4
�
�
P 2
X

�
✓
�
P 0
X

� Z d⇠�

2⇡
e�ik·⇠⌦P, S  ̄̄q

i (⇠)U
n�
(⇠,+1) X

↵⌦
X Un�

(+1,0)  
q
j (0) P, S

↵ (1)

where we have the Wilson lines

Un�
(0,+1) = Un�(0�,1�;0T ) UT (0T ,1T ;1�), (2)

Un�
(+1,⇠) = UT (1T , ⇠T ;1�) Un�(1�, ⇠�, ⇠T ). (3)

Here Un�(a�, b�; cT ) indicates a Wilson line running along the minus direction from [a�, 0+, cT ] to [b�, 0+, cT ], while
UT (aT , bT ; c�) indicates a Wilson line running in the transverse direction from [c�, 0+,aT ] to [c�, 0+, bT ], i.e.

Un�(a�, b�; cT ) = P exp


�ig

Z b�

a�
d⇣�A+(⇣�, 0+, cT )

�
, (4)

UT (aT , bT ; c
�) = P exp


�ig

Z bT

aT

d⇣T ·AT (c
�, 0+, ⇣T )

�
. (5)

The correlator in Eq. (??) is the one appearing in semi-inclusive DIS. In di↵erent processes the structure of the gauge
link can change [? ? ? ? ]. For instance, in Drell-Yan lepton pair production all occurrences of 1� in the gauge
links should be replaced by �1�. In particular, this reverses the sign of all T-odd distribution functions appearing in
the correlator (see below). In partonic processes with colored states in both the initial and final state, the gauge link
contains contributions running to 1� as well as �1�, and T-odd terms di↵er by more than a simple sign change.

The unpolarized PDF f1 is defined as

f1(x) = �[n/�](x) ⌘ 1

2
Tr

⇥
�n/�

⇤
(6)

so that

fq
1 (x) =

1

2

Z
d⇠�

2⇡
e�ik+⇠�

⌦
P, S  ̄̄q

i (⇠
�, 0+,~0?)Un�

(⇠�,+1�)

�
n/�

�
ij
Un�
(+1�,0�)  

q
j (0

�, 0+,~0?) P, S
↵
. (7)

Let us compute the “perturbative” f1 for a quark in a quark. For a free quark, we have

P, S
↵
= c†(P ) 0

↵
. (8)

At order ↵0
S , the Wilson line is just 1, the correlator is simply

�q
ji(x, S) =

Z
d⇠�

2⇡
e�ip·⇠⌦P, S  ̄̄q

i (⇠) 
q
j (0) P, S

↵����
⇠+=⇠T=0, p+=xP+

(9)

and we obtain (in the unpolarized case)

�q
ji(x) =

Z
d⇠�

2⇡
e�i(xP+�P+)⇠� 1

2

X

s

uj(P )ui(P ) =
1

2
P/ji �(xP

+ � P+) (10)

and

fq
1 (x) =

1

2

Z
d⇠�

2⇡
e�i(xP+�P+)⇠� Tr

h1
2

X
u(P )u(P )n/�

i
= �(xP+ � P+)P+ = �(1� x) (11)

We now consider the order ↵S corrections. We have to take into account all the diagrams shown in the figure: three
virtual diagrams and their Hermitean conjugate, three real diagrams and their Hermitean conjugate.

Diagram (v1) contains the quark self-energy diagram. It has been calculated in many ways in the literature. The
crucial part in the calculation is the term (see, e.g., Eq. (2.4.36) in Field, or Eq. (7.16) of Peskin–Schroeder)

�i⌃(p) = �g2CF

Z
d4k

(2⇡)4
�↵

p/� k/+m

(p� k)2 �m2 + i✏
��

1

k2 + i✏

✓
g↵� + ⌘

k↵k�
k2

◆
(12)

unpolarized



Are there more “relevant” and less “relevant” parts?
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To address this problem, let’s first look at a full QED process like electron—muon 
scattering, where the cross section is proportional to the contraction of two leptonic 
tensors.
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Introduce light-cone vectors n+ and n- so that (n+)2=(n-)2=0, n+.n-=1.
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Light cone coordinates
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Choice of frame (not necessary, but useful)

15

The most symmetric choice is (Breit frame)
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but by changing P+ we can select any other frame (e.g. proton rest frame)



Key points

• The relevant components are the + components before the absorption of the 
photon and the − components after the absorption. 


• The identification of the relevant components can be done in a frame-independent 
way, however it is convenient to work in certain frames to simplify the discussion
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Back to the hadron tensor
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2.1 DIS in the parton model 15

and we introduce the momentum p = k � q to obtain

2MW
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X
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�
µ
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⌫
lj.

(2.34)

Finally, we use part of the exponential to perform a translation of the field operators and
we use completeness to eliminate the unobserved X states, so that

2MW
µ⌫(q, P, S) =

X

q

e
2
q

Z
d4
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µ
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⌫
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⌘
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(2.35)

The hadronic tensor can be written in a more compact way by introducing the quark-
quark correlation function �

2MW
µ⌫(q, P, S) =

X

q

e
2
q
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d4
p �

⇣�
p + q

�2 � m
2
⌘
✓
�
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(2.36)

where

�ji(p, P, S) =
1

(2⇡)4

Z
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(4)

⇣
P � p � PX

⌘
,

(2.37)

As the quark fields should carry a flavor index that we omitted, also the correlation functions
are flavor dependent and they should be indicated more appropriately as �q. A graphical
representation of the hadronic tensor at tree level in the parton model is given by the so-called
handbag diagram, depicted in Fig. 2.1 on the following page.

We parametrize the quark momentum p in the following way

p
µ =


p
2 + |pT |2
2xP+

, xP
+
, pT

�
. (2.38)

In our approach, we assume that neither the virtuality of the quark, p2, nor its transverse
momentum squared, |pT |2, can be large in comparison with the hard scale Q

2. Under these
conditions, the quark momentum is soft with respect to the hadron momentum and its
relevant component is xP

+. In Eq. (2.36), neglecting terms which are 1/Q suppressed, we
can use an approximate expression for the delta function

�

⇣�
p + q

�2 � m
2
⌘

⇡ �(p+ + q
+) ⇡ P

+
�(x � xB) (2.39)
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In our approach, we assume that neither the virtuality of the quark, p2, nor its transverse
momentum squared, |pT |2, can be large in comparison with the hard scale Q

2. Under these
conditions, the quark momentum is soft with respect to the hadron momentum and its
relevant component is xP

+. In Eq. (2.36), neglecting terms which are 1/Q suppressed, we
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compared to our lepton tensor analogy, there is an extra integration over the 
phase space of the final quark (assumed to go unobserved, but on shell)



Relevant parts
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pµ =


p2 + |pT |2
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Fraction of light-cone “+” momentum

We assume that virtuality and 
transverse momentum of the 
quark are small compared to Q

Transverse momentum



Correlator
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So far it was only INCLUSIVE DIS, what are the 
modifications in SEMI-INCLUSIVE DIS?



Changes to be done

• We do not integrate over the final-state quark, but we detect a hadron in the final 
state and we integrate over all other fragments 


• We have another external vector (final-state hadron momentum) that cannot be 
collinear to the other two (q and P). 
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flux,

ε =
1 − y

1 − y + y2/2
. (2.4)

The 18 structure functions F on the r.h.s. depend on x, Q2, z and P 2
h⊥ and encode the

strong-interaction dynamics of the hadronic subprocess γ∗ + p → h + X. Their first and

second subscript respectively specifies the polarization of the beam and the target. In the

structure functions FUU,T , FUU,L and F sin(φh−φS)
UT,T , F sin(φh−φS)

UT,L , the third subscript refers to

the transverse and longitudinal polarization of the photon.

To calculate the SIDIS structure functions it is convenient to use light-cone coordinates

with respect to the directions of the relevant hadron momenta. We introduce light-like

vectors n+ and n− with n+ · n− = 1 such that, up to mass corrections, n+ is proportional

to P and n− proportional to Ph. A rescaling

n+ → κn+ , n− → κ−1n− (2.5)

corresponds to boosts in the collinear direction. The off-collinearity of the process is de-

termined by the vector

qµ
T = qµ + (1 − r)xPµ − Pµ

h /z (2.6)

with r = q2
T /Q2. For ease of notation we denote the length of this vector by

qT =
(
−qµ

T qTµ

)1/2
, (2.7)

so that q2
T is positive. There is a simple relation between the transverse momentum qµ

T of

the photon with respect to the hadrons and the transverse momentum Pµ
h⊥ of the produced

hadron with respect to the photon and proton: Pµ
h⊥ = −zqµ

T − 2rzxPµ. The SIDIS cross

section differential in q2
T instead of P 2

h⊥ is hence equal to z2 times the r.h.s. of (2.3).

3. Factorization and qT resummation

In this section we recall some important results for the description of hard processes with

measured qT , in particular the factorization for low qT formulated by Collins and Soper [20]

and its connection to the procedure of transverse momentum resummation by Collins, Soper

and Sterman [1]. In the following we refer to these authors as CS and CSS, respectively.

In the next two subsections we focus on the unpolarized SIDIS cross section differential in

qT but integrated over the azimuthal angle φh.

3.1 Collins-Soper factorization

In the work of CS, factorization was derived for the production of back-to-back jets in

electron-positron annihilation, or more specifically for e+e− → A+B +X, where A and B

are two hadrons belonging to opposite-side jets in the e+e− c.m. In general the momenta

PA and PB of the two hadrons are not exactly back-to-back because of their recoil against

the additional particles X produced in the process. The cross section, or equivalently the

hadron tensor, depends on the transverse momentum qµ
T of the virtual photon w.r.t. the

hadrons in the c.m. of A and B, which is the analog of qµ
T introduced for SIDIS in (2.6).
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Possible choices of light-cone vectors
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34 3. Semi-inclusive DIS

where now the structure functions on the r.h.s. are integrated versions of the previous ones,
i.e.

FUU,T/L(xB, zh, Q
2) =

Z
d2Ph? FUU,T/L(xB, zh, P

2
h?, Q

2). (3.15)

Finally, the connection the result for totally inclusive DIS can be obtained by

d�(`p ! `X)

dxB dy
=

X

h

Z
dzh zh

d�(`p ! `hX)

dz dxB dy
(3.16)

where we have summed over all hadrons in the final state. This leads to the result already
given in Eq. (2.23) (integrated over �S), once we identify

X

h

Z
dzh zh FUU,T (xB, zh, Q

2) = FT (xB, Q
2), (3.17)

X

h

Z
dzh zh FUU,L(xB, zh, Q

2) = FL(xB, Q
2), (3.18)

Time-reversal invariance requires (see, e.g., Ref. [?])
X

h

Z
dzh zh F

sin�S
UT (xB, zh, Q

2) = 0. (3.19)

The choice of a convenient frame to deal with semi-inclusive DIS is less straightforward
than for inclusive DIS, due to the presence of Ph. We have two choices:

• FRAME 1: Keep the photon and proton to be collinear, give a transverse component
to Ph. This means to keep the parametrization of the vectors as given in Eq. (2.29)
and simply adding

P
µ
h =


zhQp

2
,
M

2
h + |Ph?|2

zhQ
p

2
, Ph?

�
(3.20)

• FRAME 2: Keep the proton and outgoing hadron to be collinear, give a transverse
component to q. In terms of light-cone vectors this means choosing

P
µ = P

+
n
µ
+ +

M
2

2P+
n
µ
� , (3.21)

P
µ
h = P

�
h n

µ
� +

M
2
h

2P�
h

n
µ
+ . (3.22)

In this frame, the photon momentum has a transverse component. If we further fix

xP
+ = P

�
h /z = Q/

p
2 (3.23)

we can explicitly write the vectors involved as follows

P
µ =


xBM

2

Q
p

2
,

Q

xB

p
2
, 0

�
(3.24a)

P
µ
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zhQp
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,

M
2
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p

2
, 0

�
(3.24b)

q
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Qp
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, � (Q2 � |qT |2)

Q
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2
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⇡


Qp
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, qT

�
(3.24c)
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p
2 (3.23)

we can explicitly write the vectors involved as follows
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Ex. 3
Derive the following expressions of the involved momenta in the frame we are using

P
µ =


xBM

2

Q
p

2
,

Q

xB

p
2
, 0

�
(2.29a)

q
µ =


Qp
2
, � Qp

2
, 0T

�
(2.29b)
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y
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. (2.29d)

The phenomenology of DIS taught us that at su�ciently high Q
2 we can assume that

the scattering of the electron takes place o↵ a quark of mass m inside the nucleon. The
final state X can be split in a quark with momentum k plus a state X with momentum
PX . Considering the electron-quark interaction at tree level only, the hadronic tensor can
be written as
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(2⇡)3 2P 0
X

Z
d3k

(2⇡)3 2k0
(2⇡)4 �(4)

⇣
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µ
ik (/k + m)kl �

⌫
lj,

(2.30)

where k is the momentum of the struck quark, the index q denotes the quark flavor and eq

is the fractional charge of the quark. Note that, for simplicity, we omitted the flavor indices
on the quark fields. The integration over the phase space of the final-state quark can be
replaced by a four-dimensional integral with an on-shell condition,

Z
d3k

2k0
�!

Z
d4
k �

�
k
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2
�
✓
�
k
0 � m

�
, (2.31)

so that the hadronic tensor can be rewritten as
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Next, we Fourier transform the Dirac delta function according to

�
(4)

⇣
P + q � k � PX

⌘
�!

Z
d4
⇠

(2⇡)4
ei (P+q�k�PX)·⇠ (2.33)

Choice 1:  
P and q have no transverse component.

I work with this one. The results are 
independent of this choice

Choice 2:  
P and Ph have no transverse component

qT = �P h?
zh

Pµ = P+nµ
+ +

M2

2P+
nµ
�,

Pµ
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2P�
h

nµ
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h nµ
�.
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Figure 3.2: The bull diagram, describing the hadronic tensor at tree level.

The first choice seems to be the most simple one, but in reality from the theoretical point
of view it is better to stick to the second option, in order to preserve a symmetry between
P and Ph.

In any case, it turns out that if we neglect subleading twist corrections, all vectors in the
two frames are approximately the same, the only di↵erence is the presence of P? in FRAME
1 and the presence of qT in FRAME 2, and the two are simply connected by

qT = �zPh?. (3.25)

Therefore, in this chapter we are not going to care very much about distinguishing the two
frames, and every time we have qT we can replace it with �zPh? or vice-versa, at our
convenience.

3.2 Unpolarized SIDIS in the parton model

In the spirit of the parton model, the virtual photon strikes a quark inside the nucleon. In the
case of current fragmentation, the tagged final state hadron comes from the fragmentation
of the struck quark. The scattering process can then be factorized in two soft hadronic parts
connected by a hard scattering part, as shown in Fig. 3.2.

Considering only the Born-level contribution to the hard scattering, the hadronic tensor
can be written as

2MW
µ⌫(q, P, S, Ph) =

X

q

e
2
q

Z
d4
p d4

k �
(4) (p + q � k) Tr (�(p, P, S) � µ �(k, Ph) �

⌫) ,

(3.26)

This is the result, then we are going to motivate it
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Figure 3.2: The bull diagram, describing the hadronic tensor at tree level.

The first choice seems to be the most simple one, but in reality from the theoretical point
of view it is better to stick to the second option, in order to preserve a symmetry between
P and Ph.

In any case, it turns out that if we neglect subleading twist corrections, all vectors in the
two frames are approximately the same, the only di↵erence is the presence of P? in FRAME
1 and the presence of qT in FRAME 2, and the two are simply connected by

qT = �zPh?. (3.25)

Therefore, in this chapter we are not going to care very much about distinguishing the two
frames, and every time we have qT we can replace it with �zPh? or vice-versa, at our
convenience.

3.2 Unpolarized SIDIS in the parton model

In the spirit of the parton model, the virtual photon strikes a quark inside the nucleon. In the
case of current fragmentation, the tagged final state hadron comes from the fragmentation
of the struck quark. The scattering process can then be factorized in two soft hadronic parts
connected by a hard scattering part, as shown in Fig. 3.2.

Considering only the Born-level contribution to the hard scattering, the hadronic tensor
can be written as

2MW
µ⌫(q, P, S, Ph) =
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q
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d4
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(3.26)

36 3. Semi-inclusive DIS

where � and � are so-called quark-quark correlation functions and are defined as
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We need to introduce a parametrization for the vectors

p
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p
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+
, pT

�
, (3.29a)

k
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Neglecting terms which are 1/Q suppressed, we can write
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and replacing

d4
k = d2kT dk+
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we obtain the compact expression
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where, as we shall do very often, we used the shorthand notation
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and where we introduced the “unintegrated” or “transverse-momentum dependent” correla-
tion functions
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d4p = d2pT dp� P+ dx
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Only at low transverse momentum P 2
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Key points

• At “parton-model level,” the hadronic tensor can be written in terms of 
correlations functions


• For inclusive DIS, you need only the distribution function correlator, integrated 
over pT


• For semi-inclusive DIS, you need distribution and fragmentation function 
correlators, not integrated over pT
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