Theory of TMDs

Alessandro Bacchetta (Pavia U. and INFN) alessandro.bacchetta@unipv.it

European Summer School on the Physics of the Electron-Ion Collider June 18-22, 2023
Corigliano-Rossano Italy

Plan of the lectures

\checkmark Review the idea of structure functions for DIS and introduce them for semiinclusive DIS

- Introduce the idea of quark-quark correlation functions
- Parametrize correlation functions in terms of PDFs or Transverse Momentum Distributions (TMDs)
- Obtain the expression of structure functions for semi-inclusive DIS in terms of TMDs
- Discuss concept of TMD factorization and TMD evolution
- Discuss a bit of phenomenology

Transverse Momentum Distributions

About names and acronyms

- TMD as an adjective stands for Transverse Momentum Dependent
- TMD as a noun stands for Transverse Momentum Distribution and it is usually meant to encompass both transverse-momentum-dependent PDFs and Fragmentation Functions (FFs)

DIS cross section in terms of structure functions

see, e.g., A.B., Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)

Hadronic tensor in terms of correlation function

This is the result, then we are going to motivate it

$$
2 M W^{\mu \nu}(q, P, S) \approx \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi\left(x_{B}, S\right) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]
$$

Hadronic tensor in terms of correlation function

This is the result, then we are going to motivate it

$$
2 M W^{\mu \nu}(q, P, S) \approx \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi\left(x_{B}, S\right) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]
$$

$$
\Phi_{j i}^{q}(x, S)=\left.\int \frac{d \xi^{-}}{2 \pi} e^{-\mathrm{i} p \cdot \xi}\langle P, S| \bar{\psi}_{i}^{q}(\xi) \psi_{j}^{q}(0)|P, S\rangle\right|_{\xi^{+}=\boldsymbol{\xi}_{T}=0, p^{+}=x P^{+}}
$$

Just a reminder: fermion fields

$$
\bar{\psi}(x)=\sum_{s} \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}\left(d_{s}(\vec{k}) \bar{v}_{s}(\vec{k}) e^{-i k x}+c_{s}^{\dagger}(\vec{k}) \bar{u}_{s}(\vec{k}) e^{i k x}\right)
$$

positron absorption and electron creation

$$
\psi(x)=\sum_{s} \int \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}\left(c_{s}(\vec{k}) u_{s}(\vec{k}) e^{-i k x}+d_{s}^{\dagger}(\vec{k}) v_{s}(\vec{k}) e^{i k x}\right)
$$

electron absorption and positron creation

Quark-in-a-quark case

At order α^{0}, the calculation should be simple and give us a result very similar to the leptonic tensor

Quark-in-quark case

$$
|P, S\rangle=c^{\dagger}(P)|0\rangle
$$

unpolarized

$$
\Phi_{j i}^{q}(x)=\int \frac{d \xi^{-}}{2 \pi} e^{-\mathrm{i}\left(x P^{+}-P^{+}\right) \xi^{-}} \frac{1}{2} \sum_{s} u_{j}(P) \bar{u}_{i}(P)=\frac{1}{2} \not P_{j i} \delta\left(x P^{+}-P^{+}\right)
$$

Are there more "relevant" and less "relevant" parts?

To address this problem, let's first look at a full QED process like electron-muon scattering, where the cross section is proportional to the contraction of two leptonic tensors.

$\operatorname{Tr}\left[(P+M) \gamma^{\mu}(P+q+M) \gamma^{\nu}\right]=4 P^{\mu}(P+q)^{\nu}+4 P^{\nu}(P+q)^{\mu}-4 g^{\mu \nu} P \cdot(P+q)+4 M^{2} g^{\mu \nu}$

Are there more "relevant" and less "relevant" parts?

```
Tr[(PP+M)\mp@subsup{\gamma}{}{\mu}(PP+qq+M)\mp@subsup{\gamma}{}{\nu}]=4\mp@subsup{P}{}{\mu}(P+q\mp@subsup{)}{}{\nu}+4\mp@subsup{P}{}{\nu}(P+q\mp@subsup{)}{}{\mu}-4\mp@subsup{g}{}{\mu\nu}P\cdot(P+q)+4M\mp@subsup{M}{}{2}\mp@subsup{g}{}{\mu\nu}
```

Introduce light-cone vectors n_{+}and $n-$ so that $\left(n_{+}\right)^{2}=\left(n_{-}\right)^{2}=0, n_{+} . n_{-}=1$.

Write P and q in terms of n_{+}and $n-$

$$
\begin{aligned}
P^{\mu}= & P^{+}\left(n_{+}\right)^{\mu}+\frac{M^{2}}{2 P^{+}}\left(n_{-}\right)^{\mu} \\
q^{\mu}= & -x_{B} P^{+}\left(n_{+}\right)^{\mu}+\frac{Q^{2}}{2 x_{B} P^{+}}\left(n_{-}\right)^{\mu} \\
(P+q)^{\mu}= & \left(1-x_{B}\right) P^{+}\left(n_{+}\right)^{\mu}+\left(\frac{M^{2}}{2 P^{+}}+\frac{Q^{2}}{2 x_{B} P^{+}}\right)\left(n_{-}\right)^{\mu} \\
& \Longrightarrow x_{B}=1-\frac{M^{2}}{Q^{2}}
\end{aligned}
$$

Are there more "relevant" and less "relevant" parts?

$$
\operatorname{Tr}\left[(\not P+M) \gamma^{\mu}(\not P+\not q+M) \gamma^{\nu}\right]=4 P^{\mu}(P+q)^{\nu}+4 P^{\nu}(P+q)^{\mu}-4 g^{\mu \nu} P \cdot(P+q)+4 M^{2} g^{\mu \nu}
$$

Introduce light-cone vectors n_{+}and n_{-}so that $\left(\mathrm{n}_{+}\right)^{2}=\left(\mathrm{n}_{-}\right)^{2}=0, \mathrm{n}_{+} \cdot \mathrm{n}_{-}=1$.

Write P and q in terms of n_{+}and n_{-}
It is sufficient to take into

$$
\begin{array}{rlrl}
P^{\mu} & =P^{+}\left(n_{+}\right)^{\mu} & & \begin{array}{c}
\text { consideration the }+ \text { component of } \mathrm{P} \\
\text { and the - component of } \mathrm{P}+\mathrm{q}
\end{array} \\
q^{\mu} & =-x_{B} P^{+}\left(n_{+}\right)^{\mu}+\frac{Q^{2}}{2 x_{B} P^{+}}\left(n_{-}\right)^{\mu} \\
(P+q)^{\mu} & =\frac{Q^{2}}{2 x_{B} P^{+}}\left(n_{-}\right)^{\mu} \quad \text { Neglecting terms of order } \mathrm{M}^{2} / \mathrm{Q}^{2}
\end{array}
$$

Light cone coordinates

Light-cone vectors will be indicated as

$$
\begin{equation*}
a^{\mu}=\left[a^{-}, a^{+}, \boldsymbol{a}_{T}\right]=\left[\frac{a^{0}-a^{3}}{\sqrt{2}}, \frac{a^{0}+a^{3}}{\sqrt{2}}, a^{1}, a^{2}\right] . \tag{1}
\end{equation*}
$$

The dot-product in light-cone components is

$$
\begin{equation*}
a \cdot b=a^{+} b^{-}+a^{-} b^{+}-\boldsymbol{a}_{T} \cdot \boldsymbol{b}_{T} \tag{2}
\end{equation*}
$$

The light-cone decomposition of a vector can be written in a Lorentz covariant fashion using two light-like vectors n_{+}and n_{-}satisfying $n_{ \pm}^{2}=0$ and $n_{+} \cdot n_{-}=1$ and promoting \boldsymbol{a}_{T} to a four-vector $a_{T}^{\mu}=\left[0,0, \boldsymbol{a}_{T}\right]$ so that

$$
\begin{equation*}
a^{\mu}=a^{+} n_{+}^{\mu}+a^{-} n_{-}^{\mu}+a_{T}^{\mu}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
a^{+}=a \cdot n_{-}, \quad a^{-}=a \cdot n_{+}, \quad a_{T} \cdot n_{+}=a_{T} \cdot n_{-}=0 \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
a_{T} \cdot b_{T}=-\boldsymbol{a}_{T} \cdot \boldsymbol{b}_{T} \tag{5}
\end{equation*}
$$

Choice of frame (not necessary, but useful)

The most symmetric choice is (Breit frame)

$$
P^{+}=\frac{Q}{x_{B} \sqrt{2}}
$$

but by changing P^{+}we can select any other frame (e.g. proton rest frame)
Neglecting masses and setting $x_{B}=1$ in this trivial case

$$
\begin{gathered}
P \sum_{2}^{q} P+q \\
P^{\mu}=\left[0, \frac{Q}{\sqrt{2}}, 0,0\right] \\
q^{\mu}=\left[\frac{Q}{\sqrt{2}},-\frac{Q}{\sqrt{2}}, 0,0\right] \\
(P+q)^{\mu}=\left[\frac{Q}{\sqrt{2}}, 0,0,0\right]
\end{gathered}
$$

Key points

- The relevant components are the + components before the absorption of the photon and the - components after the absorption.
- The identification of the relevant components can be done in a frame-independent way, however it is convenient to work in certain frames to simplify the discussion

Back to the hadron tensor

$$
\begin{aligned}
2 M W^{\mu \nu}(q, P, S)= & \sum_{q} e_{q}^{2} \int \mathrm{~d}^{4} p \delta\left((p+q)^{2}-m^{2}\right) \theta\left(p^{0}+q^{0}-m\right) \\
& \times \operatorname{Tr}\left[\Phi(p, P, S) \gamma^{\mu}(\not p+\not p+m) \gamma^{\nu}\right]
\end{aligned}
$$

compared to our lepton tensor analogy, there is an extra integration over the phase space of the final quark (assumed to go unobserved, but on shell)

$$
\begin{aligned}
\Phi_{j i}(p, P, S) & =\frac{1}{(2 \pi)^{4}} \int \mathrm{~d}^{4} \xi \mathrm{e}^{-\mathrm{i} p \xi}\langle P, S| \bar{\psi}_{i}(\xi) \psi_{j}(0)|P, S\rangle \\
& =\sum_{X} \int \frac{\mathrm{~d}^{3} P_{X}}{(2 \pi)^{3} 2 P_{X}^{0}}\langle P, S| \bar{\psi}_{i}(0)|X\rangle\langle X| \psi_{j}(0)|P, S\rangle \delta^{(4)}\left(P-p-P_{X}\right)
\end{aligned}
$$

Relevant parts

$$
p^{\mu}=\left[\frac{p^{2}+\left|\boldsymbol{p}_{T}\right|^{2}}{2 x P^{+}}, x P^{+}, \boldsymbol{p}_{T}\right] \quad \text { Fraction of light-cone " }+ \text { " }
$$

$$
d^{4} p=d^{2} \boldsymbol{p}_{T} d p^{-} P^{+} d x
$$

We assume that virtuality and transverse momentum of the

$$
\delta\left((p+q)^{2}-m^{2}\right) \approx \delta\left(p^{+}+q^{+}\right) \approx P^{+} \delta\left(x-x_{B}\right)
$$ quark are small compared to Q

$$
\begin{aligned}
2 M W^{\mu \nu}(q, P, S) \approx & \sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{p}_{T} d p^{-} d x \frac{P^{+}}{2 P \cdot q} \delta\left(x-x_{B}\right) \\
& \times \operatorname{Tr}\left[\Phi^{q}(p, P, S) \gamma^{\mu}(\not p+\not q+m) \gamma^{\nu}\right] \\
= & \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi^{q}\left(x_{B}, S\right) \gamma^{\mu} \frac{P^{+}}{P \cdot q}(\not p+\not q+m) \gamma^{\nu}\right] \\
= & \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi^{q}\left(x_{B}, S\right) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]
\end{aligned}
$$

Correlator

$$
2 M W^{\mu \nu}(q, P, S) \approx \sum_{q} e_{q}^{2} \frac{1}{2} \operatorname{Tr}\left[\Phi\left(x_{B}, S\right) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]
$$

$$
\begin{aligned}
& \Phi_{i j}(x, S)=\left.\int d^{2} \boldsymbol{p}_{T} d p^{-} \Phi_{i j}(p, P, S)\right|_{p^{+}=x P^{+}} \\
&=\left.\int \frac{d \xi^{-}}{2 \pi} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=\boldsymbol{\xi}_{T}=0} \\
& \quad \Phi_{i j}(p, P, S)=\frac{1}{(2 \pi)^{4}} \int d^{4} \xi e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle
\end{aligned}
$$

So far it was only INCLUSIVE DIS, what are the modifications in SEMI-INCLUSIVE DIS?

Changes to be done

- We do not integrate over the final-state quark, but we detect a hadron in the final state and we integrate over all other fragments
- We have another external vector (final-state hadron momentum) that cannot be collinear to the other two (q and P).

$$
\begin{gathered}
q_{T}^{\mu}=q^{\mu}+(1-r) x P^{\mu}-P_{h}^{\mu} / z \quad P_{h \perp}^{\mu}=-z q_{T}^{\mu}-2 r z x P^{\mu} \\
r=q_{T}^{2} / Q^{2}
\end{gathered}
$$

$$
\text { If } \mathrm{q}^{2} \ll \mathrm{Q}^{2} \text {, then } \quad P_{h \perp}^{\mu}=-z q_{T}^{\mu}
$$

Possible choices of light-cone vectors

Choice 1:

P and q have no transverse component.

$$
\begin{gathered}
P^{\mu}=P^{+} n_{+}^{\prime \mu}+\frac{M^{2}}{2 P^{+}} n_{-}^{\prime \mu}, \\
q^{\mu}=-x_{B} P^{+} n_{+}^{\prime \mu}+\frac{Q^{2}}{2 x_{B} P^{+}} n_{-}^{\prime \mu} . \\
P^{\mu}=\left[\frac{x_{B} M^{2}}{Q \sqrt{2}}, \frac{Q}{x_{B} \sqrt{2}}, \mathbf{0}\right] \\
q^{\mu}=\left[\frac{Q}{\sqrt{2}},-\frac{Q}{\sqrt{2}}, \mathbf{0}_{T}\right] \\
P_{h}^{\mu}=\left[\frac{z_{h} Q}{\sqrt{2}}, \frac{M_{h}^{2}+\left|\boldsymbol{P}_{h \perp}\right|^{2}}{z_{h} Q \sqrt{2}}, \boldsymbol{P}_{h \perp}\right] \\
\boldsymbol{q}_{T}=-\frac{\boldsymbol{P}_{h \perp}}{z_{h}}
\end{gathered}
$$

Choice 2:
P and P_{h} have no transverse component

$$
\begin{aligned}
P^{\mu} & =P^{+} n_{+}^{\mu}+\frac{M^{2}}{2 P^{+}} n_{-}^{\mu}, \\
P_{h}^{\mu} & =\frac{M_{h}^{2}}{2 P_{h}^{-}} n_{+}^{\mu}+P_{h}^{-} n_{-}^{\mu} . \\
P^{\mu} & =\left[\frac{x_{B} M^{2}}{Q \sqrt{2}}, \frac{Q}{x_{B} \sqrt{2}}, \mathbf{0}\right] \\
P_{h}^{\mu} & =\left[\frac{z_{h} Q}{\sqrt{2}}, \frac{M_{h}^{2}}{z_{h} Q \sqrt{2}}, \mathbf{0}\right] \\
q^{\mu} & =\left[\frac{Q}{\sqrt{2}},-\frac{\left(Q^{2}-\left|\boldsymbol{q}_{T}\right|^{2}\right)}{Q \sqrt{2}}, \boldsymbol{q}_{T}\right] \approx\left[\frac{Q}{\sqrt{2}},-\frac{Q}{\sqrt{2}}, \boldsymbol{q}_{T}\right]
\end{aligned}
$$

I work with this one. The results are independent of this choice

Hadronic tensor for SIDIS

This is the result, then we are going to motivate it

$$
2 M W^{\mu \nu}\left(q, P, S, P_{h}\right)=\sum_{a} e_{q}^{2} \int \mathrm{~d}^{4} p \mathrm{~d}^{4} k \delta^{(4)}(p+q-k) \operatorname{Tr}\left(\Phi(p, P, S) \gamma^{\mu} \Delta\left(k, P_{h}\right) \gamma^{\nu}\right)
$$

Fragmentation correlator

$$
\begin{aligned}
\Delta_{i j}\left(k, P_{h}\right) & =\frac{1}{(2 \pi)^{4}} \int d^{4} \zeta e^{i k \cdot \zeta}\langle 0| \psi_{i}(\zeta)\left|P_{h}\right\rangle\left\langle P_{h}\right| \bar{\psi}_{j}(0)|0\rangle \\
& =\sum_{Y} \int \frac{d^{3} \boldsymbol{P}_{Y}}{(2 \pi)^{3} 2 P_{Y}^{0}}\langle 0| \psi_{i}(0)\left|P_{h}, Y\right\rangle\left\langle P_{h}, Y\right| \bar{\psi}_{j}(0)|0\rangle \delta^{(4)}\left(k-P_{h}-P_{Y}\right)
\end{aligned}
$$

Electron case: zeroth order contribution

$$
\begin{aligned}
\Delta_{i j}(k, K) & =\int \frac{d^{4} \zeta}{(2 \pi)^{4}} e^{-i \zeta k}\langle 0| \psi_{i}(0)|e(K)\rangle\langle e(K)| \bar{\psi}_{j}(\zeta)|0\rangle \\
& =\langle 0| \psi_{i}(0)|e(K)\rangle\langle e(K)| \bar{\psi}_{j}(\zeta)|0\rangle \delta^{4}(k-K)
\end{aligned}
$$

$$
\Delta(k, K)=u(K) \bar{u}(K) \delta^{4}(K-k)=(\nmid \nmid+m) \delta^{4}(K-k)
$$

Hadronic tensor for SIDIS

$2 M W^{\mu \nu}\left(q, P, S, P_{h}\right)=\sum_{a} e_{q}^{2} \int \mathrm{~d}^{4} p \mathrm{~d}^{4} k \delta^{(4)}(p+q-k) \operatorname{Tr}\left(\Phi(p, P, S) \gamma^{\mu} \Delta\left(k, P_{h}\right) \gamma^{\nu}\right)$

$$
\begin{aligned}
& p^{\mu}=\left[\frac{p^{2}+\left|\boldsymbol{p}_{T}\right|^{2}}{2 x P^{+}}, x P^{+}, \boldsymbol{p}_{T}\right], \\
& k^{\mu}=\left[\frac{P_{h}^{-}}{z}, \frac{z\left(k^{2}+\left|\boldsymbol{k}_{T}\right|^{2}\right)}{2 P_{h}^{-}}, \boldsymbol{k}_{T}\right]
\end{aligned}
$$

$$
\delta^{(4)}(p+q-k) \approx \delta\left(p^{+}+q^{+}\right) \delta\left(q^{-}-k^{-}\right) \delta^{(2)}\left(\boldsymbol{p}_{T}+\boldsymbol{q}_{T}-\boldsymbol{k}_{T}\right)
$$

$$
\begin{aligned}
& d^{4} p=d^{2} \boldsymbol{p}_{T} d p^{-} P^{+} d x \\
& \mathrm{~d}^{4} k=\mathrm{d}^{2} \boldsymbol{k}_{T} \mathrm{~d} k^{+} P_{h}^{-} \frac{\mathrm{d} z}{z^{2}}
\end{aligned}
$$

$$
\approx \frac{1}{P^{+} P_{h}^{-}} \delta\left(x-x_{B}\right) \delta\left(1 / z-1 / z_{h}\right) \delta^{(2)}\left(\boldsymbol{p}_{T}+\boldsymbol{q}_{T}-\boldsymbol{k}_{T}\right)
$$

Final formula for hadronic tensor

$$
\begin{aligned}
& 2 M W^{\mu \nu}\left(q, P, S, P_{h}\right)=\frac{2 z_{h}}{x_{B}} \mathcal{C}\left[\operatorname{Tr}\left(\Phi\left(x_{B}, \boldsymbol{p}_{T}, S\right) \gamma^{\mu} \Delta\left(z_{h}, \boldsymbol{K}_{T}\right) \gamma^{\nu}\right)\right] \\
& \mathcal{C}[w f D]=\sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{K}_{T} \delta^{(2)}\left(z \boldsymbol{p}_{T}-\boldsymbol{K}_{T}-\boldsymbol{P}_{h \perp}\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{K}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, K_{T}^{2}\right),
\end{aligned}
$$

Only at low transverse momentum

$$
\boldsymbol{P}_{h \perp}^{2} \ll Q^{2}
$$

Quark-quark correlation functions

$$
\begin{aligned}
\Phi_{i j}(x, S) & =\int d^{2} \boldsymbol{p}_{T} \Phi_{i j}\left(x, \boldsymbol{p}_{T}\right) \\
& =\left.\int \frac{d \xi^{-}}{2 \pi} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=\boldsymbol{\xi}_{T}=0}
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{i j}\left(x, \boldsymbol{p}_{T}, S\right) & =\left.\int d p^{-} \Phi(p, P, S)\right|_{p^{+}=x P^{+}} \\
& =\left.\int \frac{d \xi^{-} d^{2} \boldsymbol{\xi}_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=0} \\
& \xi_{T} \uparrow \xi^{-1-e^{-}}
\end{aligned}
$$

Key points

- At "parton-model level," the hadronic tensor can be written in terms of correlations functions
- For inclusive DIS, you need only the distribution function correlator, integrated over p_{T}
- For semi-inclusive DIS, you need distribution and fragmentation function correlators, not integrated over p_{T}

