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Standard parton distribution functions
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Standard collinear PDFs describe the distribution of partons in one dimension in 
momentum space. They are extracted through global fits. 
See lectures by E. Tassi
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FIG. 3: Uncertainty bands for the u, d, d̄ + ū, d̄ − ū, s and g PDFs for the CJ12mid fit at

Q2 = 100 GeV2, shown on logarithmic (left) and linear (right) scales in x. Note that in the left

panel the gluon is scaled by 1/10.

well constrained by proton DIS data. The χ2 for the W asymmetry data does show a

significant increase as the magnitude of the nuclear corrections increases beyond its middle

value, indicating a preference for mild to medium nuclear corrections.

In this regard it is interesting to compare our results to those of the recent analysis

in Ref. [83], which included nuclear corrections for deuterium targets in DIS using a 4-

parameter, Q2-independent phenomenological function with the parameters varied in the

fit. The resulting correction factor, shown in Fig. 11 of Ref. [83], can be compared to those

in Fig. 2 above. Their fitted form lies between the curves for the CJ12min and CJ12mid

fits, as might be expected since these two fits have nearly identical values for χ2, while the

CJ12max value is higher. As noted above, much of the increase in χ2 for the CJ12max set is

due to the CDF W asymmetry data, which is also included in the fit of Ref. [83]. Although

this comparison is not exact, since our nuclear corrections are Q2 dependent [84] and those

in Ref. [83] are not, it is consistent with our observation that the nuclear model choices

made for the CJ12min and CJ12mid sets are preferred by the data.

The CJ12mid PDFs are shown in Fig. 3 at Q2 = 100 GeV2 with the PDF error bands

calculated as described in Sec. II E, on both logarithmic and linear x scales. The latter more

graphically illustrates the behavior of the PDFs at large values of x, where the uncertainties

from nuclear and finite-Q2 corrections are greatest. The error bands are shown in more

detail in Fig. 4, and compared to the CJ12min and CJ12max sets. It is clear that the

effects of nuclear corrections are strongest on the d PDF, with the others showing little or
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CTEQ-JLAB 12 set, Owens, Accardi, Melnitchouk, PRD87 (13)

Standard collinear PDFs describe the distribution of partons in one dimension in 
momentum space. They are extracted through global fits. 
See lectures by E. Tassi
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Transverse Momentum Distributions

6Transverse momentum

Fraction of  
longitudinal momentum

TMDs describe the distribution of partons in three dimensions in momentum 
space. They also have to be extracted through global fits.
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How “wide” is the distribution?

What happens if we include 
spin?

How does it change with x?

Is there a difference 
between flavors?
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FIG. 12: Graphical representation of the correlation matrix for the fitted parameters.
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FIG. 13: The TMD PDF of the up quark in a proton at µ =
p
⇣ = Q = 2 GeV (left panel) and 10 GeV (right panel) as

a function of the partonic transverse momentum |k?| for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the
68% CL.

Fig. 3). Future data from the Electron-Ion Collider (EIC) are expected to play an important role in getting a
better description of the TMD PDFs at low x [107, 108].

In Fig. 14, we show the TMD FF for the up quark fragmenting into a ⇡
+ at µ =

p
⇣ = Q = 2 GeV (left

panel) and 10 GeV (right panel) as a function of the pion transverse momentum |P?| (with respect to the
fragmenting quark axis) for two di↵erent values of z = 0.3 and 0.6. As in the previous figure, the uncertainty
bands correspond to the 68% CL. In both left and right panels, an additional structure clearly emerges at
intermediate P?, especially at z = 0.3, which is induced by the weighted Gaussian in Eq. (39). Further
investigations on this topic are needed, and data from electron-positron annihilations would be valuable to
better explore these features.

We stress that the error bands displayed in Figs. 13-14 reflect the uncertainty on the fitted parameters (see
Eqs. (38)-(39)) that are determined by taking into account the uncertainty on the collinear PDFs and FFs as
discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.

MAP Collaboration 
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

@ 2 GeV: the average transverse momentum squared is 0.4 GeV2 (its square root is about 0.6 GeV)  
 
@ 10 GeV: the average transverse momentum squared is 0.5 GeV2 (its square root is about and 0.7 
GeV)


2π 2π

http://arxiv.org/abs/arXiv:2206.07598
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Fig. 3). Future data from the Electron-Ion Collider (EIC) are expected to play an important role in getting a
better description of the TMD PDFs at low x [107, 108].

In Fig. 14, we show the TMD FF for the up quark fragmenting into a ⇡
+ at µ =

p
⇣ = Q = 2 GeV (left

panel) and 10 GeV (right panel) as a function of the pion transverse momentum |P?| (with respect to the
fragmenting quark axis) for two di↵erent values of z = 0.3 and 0.6. As in the previous figure, the uncertainty
bands correspond to the 68% CL. In both left and right panels, an additional structure clearly emerges at
intermediate P?, especially at z = 0.3, which is induced by the weighted Gaussian in Eq. (39). Further
investigations on this topic are needed, and data from electron-positron annihilations would be valuable to
better explore these features.

We stress that the error bands displayed in Figs. 13-14 reflect the uncertainty on the fitted parameters (see
Eqs. (38)-(39)) that are determined by taking into account the uncertainty on the collinear PDFs and FFs as
discussed in Sec. III C. However, since the fits are performed using the central set of the collinear distributions,
all TMD replicas have the same integral in k? (i.e., their values at bT = 0 are the same). As a consequence,
the plots in Figs. 13-14 only partially account for the error of the collinear distributions.

MAP Collaboration 
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

@ 2 GeV: the average transverse momentum at x=0.1 seems to be larger than at x=0.001  
 
@ 10 GeV: the above behavior changes and the two become very similar, with a much higher tail at 
low x


2π 2π

http://arxiv.org/abs/arXiv:2206.07598
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105.

towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks, because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are approximately (kx)max ⇡ 0.1 GeV for up quarks and �0.15
GeV for down quarks. To have a feeling of the order of magnitude of this distortion, we can estimate the expression
eq/(kx)max ⇡ 2⇥10�34C⇥m ⇡ 0.6⇥10�4 debye, which is about 3⇥10�5 times the electric dipole of a water molecule.

The existence of this distortion requires two ingredients. First of all, the wavefunction describing quarks inside the
proton must have a component with nonvanishing angular momentum. Secondly, e↵ects due to final state interactions
should be present [37], which in Feynman gauge can be described as the exchange of Coulomb gluons between the
quark and the rest of the proton [38]. In simplified models [39], it is possible to separate these two ingredients and
obtain an estimate of the angular momentum carried by each quark [40]. It turns out that up quarks give almost
50% contribution to the proton’s spin, while all other quarks and antiquarks give less than 10% [14]. We will leave
this model-dependent study to a future publication. A model-independent estimate of quark angular momentum
requires the determination of parton distributions that depend simultaneously on momentum and position [41, 42].

5

Q= 2GeV
Bacchetta, Delcarro,  
Pisano, Radici, 
arXiv:2004.14278

https://arxiv.org/abs/2004.14278
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Figure 17. Tomographic scan of the nucleon via the momentum space quark density function
⇢1;q h"(x,kT ,ST , µ) defined in Eq. (4.7) at x = 0.1 and µ = 2 GeV. Panel (a) is for u quarks, panel
(b) is for d quark, panel (c) is for ū quark, and panel (d) is for s quark. The variation of color in the plot
is due to variation of replicas and illustrates the uncertainty of the extraction. The nucleon polarization
vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
shift of the distributions along x̂-direction due to the Sivers function.

polarization, we introduce the momentum space quark density function

⇢1;q h"(x,kT ,ST , µ) = f1;q h(x, kT ; µ, µ
2) �

kTx

M
f
?
1T ;q h(x, kT ; µ, µ

2), (4.7)

where kT is a two-dimensional vector (kTx, kTy). This function reflects the TMD density of un-
polarized quark q in the spin-1/2 hadron totally polarized in ŷ-direction, ST = (Sx, Sy), where
Sx = 0, Sy = 1, compare to Eq. (4.2). In Fig. 17 we plot ⇢ at x = 0.1 and µ = 2 GeV. To present
the uncertainty in unpolarized and Sivers function, we randomly select one replica for each point of
a figure. Thus, the color fluctuation roughly reflects the uncertainty band of our extraction. The
presented pictures have a shift of the maximum in kTx, which is the influence of Sivers function that
introduces a dipole modulation of the momentum space quark densities. This shift corresponds to
the correlation of the Orbital Angular Momentum (OAM) of quarks and the nucleon’s spin. One
can see from Fig. 17 that u quark has a negative correlation and d quark has a positive correlation.
Without OAM of quarks, such a correlation and the Sivers function are zero, and thus we can

– 27 –

Bury, Prokudin,  
Vladimirov, 
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vector is along ŷ-direction. White cross indicates the position of the origin (0, 0) in order to highlight the
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Collinear PDFs

• Define structure functions 




• Write structure functions in the parton model 
 




• Write structure functions based on QCD factorization

Hadronic tensor  and Structure Functions
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Coefficient functions scale dependencelongitudinal convolution



We’ll try to do that also for semi-inclusive DIS 
(SIDIS)



Plan of the lectures

• Review the idea of structure functions for DIS and introduce them for semi-
inclusive DIS


• Introduce the idea of quark-quark correlation functions 


• Parametrize correlation functions in terms of PDFs or Transverse Momentum 
Distributions (TMDs)


• Obtain the expression of structure functions for semi-inclusive DIS in terms of 
TMDs 


• Discuss concept of TMD factorization and TMD evolution


• Discuss a bit of phenomenology

14



Useful references

• Piet Mulders’ lecture notes http://www.nikhef.nl/~pietm/COR-0.pdf


• The 3D structure of the nucleon https://doi.org/10.1140/epja/i2016-16164-4


• J. Collins, Foundations of Perturbative QCD (2011)


• TMD collaboration, “TMD Handbook,” arXiv:2304.03302
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Abstract
This handbook provides a comprehensive review of transverse-momentum-dependent

parton distribution functions and fragmentation functions, commonly referred to as transverse
momentum distributions (TMDs). TMDs describe the distribution of partons inside the proton
and other hadrons with respect to both their longitudinal and transverse momenta. They
provide unique insight into the internal momentum and spin structure of hadrons, and are a
key ingredient in the description of many collider physics cross sections. Understanding TMDs
requires a combination of theoretical techniques from quantum field theory, nonperturbative
calculations using lattice QCD, and phenomenological analysis of experimental data. The
handbook covers a wide range of topics, from theoretical foundations to experimental analyses,
as well as recent developments and future directions. It is intended to provide an essential
reference for researchers and graduate students interested in understanding the structure of
hadrons and the dynamics of partons in high energy collisions.
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10 2. Inclusive DIS

where ↵ = e
2/4⇡. The formula above is valid in the so-called “single-photon exchange approxi-

mation.” Some QED radiative corrections can be included without modifying this formula [3], but
e↵ects such as double-photon exchange are left out [109].

Considering the lepton to be longitudinally polarized, in the massless limit the leptonic tensor
is given by

Lµ⌫ =
X

�0e

⇣
ū̄(l0, �0

e
) �µ u(l, �e)

⌘⇤ ⇣
ū̄(l0, �0

e
) �⌫ u(l, �e)

⌘

= �Q
2
gµ⌫ + 2

⇣
lµl
0
⌫ + l

0
µl⌫

⌘
+ 2i �e ✏µ⌫⇢� l

⇢
l
0�.

(2.4)

Ex. 1
Compute the leptonic tensor using Mathematica and the FeynCalc package (www.feyncalc.org).
The most important instructions are

<< HighEnergyPhysics‘FeynCalc‘

ScalarProduct[l, lp] = Qˆ2/2;

Amp0 = Contract[

Spinor[l].(-I e GA[\[Mu]]).((1 + GA[5] \[Lambda])/2).Spinor[lp]]

Amp0bar = ComplexConjugate[Amp0] /. \[Mu] -> \[Nu]

FermionSpinSum[Amp0 Amp0bar]

Lept = FermionSpinSum[Amp0 Amp0bar]

/. {DiracTrace -> Tr} /. {\[Lambda]ˆ2 -> 1}

It may be convenient (for reasons that will be clear when considering the structure of the
hadronic tensor) to write the formulas in a more di↵erent way, by introducing the normalized
vectors

q̂
µ =

q
µ

Q
, (2.5)

t̂
µ =

2xB

Q

p
1 + �2

✓
P
µ � P · q

q2 q
µ
◆
, (2.6)

l̂
µ = � g

µ⌫
? l⌫

|gµ⌫? l⌫|
(2.7)

with the projectors on the transverse space is defined as

g
µ⌫
? = g

µ⌫ + q̂
µ
q̂
⌫ � t̂

µ
t̂
⌫, (2.8)

✏µ⌫? = ✏
µ⌫⇢�

t̂⇢q̂�. (2.9)

Orthogonal and normalized
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It turns out that

l
µ =

Q

2
q̂
µ +

(2 � y)
2y

t̂
µ +

Q

p
1 � y

y
l̂µ (2.10)

from which we can obtain

L
sym

µ⌫ =
2Q

2

y2


�
✓
1 � y +

y
2

2

◆
g?µ⌫ + 2(1 � y) t̂µt̂⌫

+ 2(1 � y)
⇣
l̂?µl̂?⌫ +

1
2

g?µ⌫
⌘
+ 2(2 � y)

p
1 � y

�
t̂µl̂⌫ + t̂⌫ l̂µ

��
(2.11)

The leptonic tensor contains all the information on the leptonic probe, which can be described
by means of perturbative QED, while the information on the hadronic target is contained in the
hadronic tensor

2MW
µ⌫(q, P, S ) =

1
2⇡

X

X

Z
d3PX

(2⇡)3 2P
0
X

(2⇡)4 �(4)
⇣
q + P � PX

⌘
H
µ⌫(P, S , PX), (2.12)

H
µ⌫(P, S , PX) =

⌦
P, S J

µ(0) X↵⌦X J
⌫(0) P, S

↵
. (2.13)

The state X symbolizes any final state, with total momentum PX. It is integrated over since in
inclusive processes the final state goes undetected.

In general, the structure of the hadronic tensor can be parametrized in terms of structure func-

tions.
Let us start from unpolarized DIS. We can use the vectors q

µ and P
µ. Let me define the parity-

reversal transformation

L
⇢
� =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

(2.14)

The following conditions must be fulfilled:

Hermiticity: W
⇤
µ⌫(q, P, S ) = W⌫µ(q, P, S ), (2.15a)

parity: L
⇢
µL
�
⌫W⇢�(q, P, S ) = Wµ⌫(q̃, P̃,�S̃ ), (2.15b)

time-reversal: L
⇢
µL
�
⌫W

⇤
⇢�(q, P, S ) = Wµ⌫(q̃, P̃, S̃ ) (2.15c)

where q̃
⌫ = L

⌫
⇢q
⇢ and so forth for the other vectors (i.e., change sign to the spatial components of

the vectors).
We could build the combinations

2MW
µ⌫ = 2M

"
A g
µ⌫ + B q

µ
q
⌫ +C

P
µ
P
⌫

M2 + D
P
µ
q
⌫ + q

µ
P
⌫

M2

#
, (2.16)

where each of the terms can depend on the scalar products Q
2 and P ·q, or more conveniently on Q

2

and xB. A combination such as i✏µ⌫⇢�P⇢q� is excluded only by parity invariance and should be taken

then

qµ = (0, 0, 0, Q)

lµ =
�

(2� y)Q
2y

,

⇥
1� y Q

y
, 0,

Q

2

⇥

l�µ =
�

(2� y)Q
2y

,

⇥
1� y Q

y
, 0, �Q

2

⇥
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y2
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�
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1� y +

y2
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1
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µ⌫(q, P, S ) =

1
2⇡

X

X

Z
d3PX

(2⇡)3 2P
0
X

(2⇡)4 �(4)
⇣
q + P � PX

⌘
H
µ⌫(P, S , PX), (2.12)

H
µ⌫(P, S , PX) =

⌦
P, S J

µ(0) X↵⌦X J
⌫(0) P, S

↵
. (2.13)

The state X symbolizes any final state, with total momentum PX. It is integrated over since in
inclusive processes the final state goes undetected.

In general, the structure of the hadronic tensor can be parametrized in terms of structure func-

tions.
Let us start from unpolarized DIS. We can use the vectors q

µ and P
µ. Let me define the parity-

reversal transformation

L
⇢
� =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

(2.14)

The following conditions must be fulfilled:

Hermiticity: W
⇤
µ⌫(q, P, S ) = W⌫µ(q, P, S ), (2.15a)

parity: L
⇢
µL
�
⌫W⇢�(q, P, S ) = Wµ⌫(q̃, P̃,�S̃ ), (2.15b)

time-reversal: L
⇢
µL
�
⌫W

⇤
⇢�(q, P, S ) = Wµ⌫(q̃, P̃, S̃ ) (2.15c)

where q̃
⌫ = L

⌫
⇢q
⇢ and so forth for the other vectors (i.e., change sign to the spatial components of

the vectors).
We could build the combinations

2MW
µ⌫ = 2M

"
A g
µ⌫ + B q

µ
q
⌫ +C

P
µ
P
⌫

M2 + D
P
µ
q
⌫ + q

µ
P
⌫

M2

#
, (2.16)

where each of the terms can depend on the scalar products Q
2 and P ·q, or more conveniently on Q

2

and xB. A combination such as i✏µ⌫⇢�P⇢q� is excluded only by parity invariance and should be takenA structure like this would be forbidden by?
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into account when considering, e.g., neutrino scattering. A combination such as P
{µ✏⌫}↵⇢�P⇢q�S ↵

is forbidden by time-reversal invariance.
Finally, electromagnetic gauge invariance requires that

qµW
µ⌫ = q⌫W

µ⌫ = 0. (2.17)

From this condition, it follows that

D = �P · q
q2 B, C =

✓
P · q
q2

◆
B +

M
2

q2 A. (2.18)

Therefore, there are only two independent structure functions.
In terms of our normalized vectors and projectors we can write

2MW
µ⌫(q, P, S ) =

1
xB

⇥�g
µ⌫
? FT (xB,Q

2) + t̂
µ
t̂
⌫
FL(xB,Q

2)
⇤
. (2.19)

In the case of polarized inclusive DIS, given the constraints, we can introduce four structure
functions. There are multiple definitions of the structure functions. A possible one is

2MW
µ⌫(q, P, S ) =

1
xB


� g

µ⌫
? FT (xB,Q

2) + t̂
µ
t̂
⌫
FL(xB,Q

2)

+ iS L✏
µ⌫
? 2xB (g1(xB,Q

2) � �2
g2(xB,Q

2))

+ it̂[µ✏⌫]⇢? S ⇢2xB� (g1(xB,Q
2) + g2(xB,Q

2))
�

(2.20)

where the involved vectors and tensors are defined in the same way as in Piet Mulders’s notes. The
connection with the standard unpolarized structure functions is

FT (xB,Q
2) = 2xBF1(xB,Q

2), (2.21)
FL(xB,Q

2) = (1 + �2)F2(xB,Q
2) � 2xBF1(xB,Q

2). (2.22)

The contraction of the leptonic and hadronic tensors leads to the following expression for the
inclusive DIS cross-section

d�

dxB dy d�S

=
2↵2

xByQ2

y
2

2 (1 � ")

⇢
FT + "FL + S k�e

p
1 � "2 2xB (g1 � �2

g2)

� |S?|�e

p
2 "(1 � ") cos �S 2xB� (g1 + g2)

�
, (2.23)

where the structure functions on the r.h.s. depend on xB and Q
2 (i.e. P · Q and q

2). We also
introduced the ratio " of longitudinal and transverse photon flux in

" =
1 � y

1 � y + 1
2y2
, and � =

2MxB

Q
(2.24)

It is often necessary, especially for experimental reasons, to distinguish also the component of
S parallel or orthogonal to the lepton beam instead of the virtual photon. However, the di↵erence

Further condition: gauge invariance
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Note that this is true for any process that can be described with a hadronic 
tensor. Also electron-proton elastic scattering, exclusive processes, inelastic 
scattering at low Q…
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g?µ⌫g
µ⌫
? = 2

t̂µt̂⌫ t̂
µt̂⌫ = 1
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=
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2 Q4
Lµ⇥(l, l�, ⇥e) 2MWµ⇥(q, P, S)
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see, e.g., A.B., Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)
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l
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2 zh Q4
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3.1 The unpolarized case 33

5 structure functions:

2MW
µ⌫(q, P, S) =

2zh
xB


� g

µ⌫
? FUU,T (xB, zh, P

2
h?, Q

2) + t̂
µ
t̂
⌫
FUU,L(xB, zh, P

2
h?, Q

2)

+
⇣
t̂
µ
ĥ
⌫ + t̂

⌫
ĥ
µ
⌘
F

cos�h
UU (xB, zh, P

2
h?, Q

2) +
⇣
ĥ
µ
ĥ
⌫ + g

µ⌫
?

⌘
F

cos 2�h
UU (xB, zh, P

2
h?, Q

2)

� i
⇣
t̂
µ
ĥ
⌫ � t̂

⌫
ĥ
µ
⌘
F

sin�h
LU (xB, zh, P

2
h?, Q

2)

�
,

(3.8)

where we introduced the normalized vector ĥ = Ph?/|Ph?|.
The choice of using the angles as indices for the structure functions is done with hindsight.

In fact, the contraction with the leptonic tensor leads to structures such as
⇣
t̂µl̂⌫ + t̂⌫ l̂µ

⌘⇣
t̂
µ
ĥ
⌫ + t̂

⌫
ĥ
µ
⌘

= �g
µ⌫
? l̂µĥ⌫ ⌘ cos�h (3.9)

⇣
t̂µ✏?⌫⇢l̂

⇢ + t̂⌫✏?µ⇢l̂
⇢
⌘⇣

t̂
µ
ĥ
⌫ + t̂

⌫
ĥ
µ
⌘

= �✏
µ⌫
? l̂µĥ⌫ ⌘ sin�h (3.10)

The above angles correspond to the definition given in the “Trento conventions” [?] and
can be computed in the target rest frame, or in the Breit frame, or in any frame reached
from the target rest frame by a boost along q̂:

cos�h =
(q̂ ⇥ l)

|q̂ ⇥ l| · (q̂ ⇥ Ph)

|q̂ ⇥ Ph|
,

sin�h =
(l ⇥ Ph) · q̂

|q̂ ⇥ l| |q̂ ⇥ Ph|
.

(3.11)

The resulting cross section after contraction with the leptonic tensor is:

d�

dxB dy dz d�h dP
2
h?

=
2⇡↵2

xBy Q
2

y
2

2 (1 � ")
(3.12)

⇥
(
FUU,T + "FUU,L +

p
2 "(1 + ") cos�h F

cos�h
UU

+ " cos(2�h)F
cos 2�h
UU + �e

p
2 "(1 � ") sin�h F

sin�h
LU (3.13)

The last term requires a polarized letpon beam. If the beam is unpolarized, it drops (but
this may not be exactly the case in experiments). The third and fourth terms vanish if we
integrate over the angle �h of the outgoing hadron (but, also in this case, the experimental
acceptance may not be perfect).

Integration of Eq. (3.71) over the transverse momentum Ph? of the outgoing hadron gives
the semi-inclusive deep inelastic scattering cross section

d�

dxB dy dz
=

4⇡↵2

xByQ
2

y
2

2 (1 � ")

⇣
FUU,T + "FUU,L

⌘
(3.14)

ĥ =
Ph?
|Ph?|
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ĥ
µ
⌘
F

sin�h
LU (xB, zh, P

2
h?, Q

2)

�
,

(3.8)

where we introduced the normalized vector ĥ = Ph?/|Ph?|.
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The last term requires a polarized letpon beam. If the beam is unpolarized, it drops (but
this may not be exactly the case in experiments). The third and fourth terms vanish if we
integrate over the angle �h of the outgoing hadron (but, also in this case, the experimental
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Integration of Eq. (3.71) over the transverse momentum Ph? of the outgoing hadron gives
the semi-inclusive deep inelastic scattering cross section

d�

dxB dy dz
=

4⇡↵2

xByQ
2

y
2

2 (1 � ")

⇣
FUU,T + "FUU,L

⌘
(3.14)

There are in total five structure functions, instead of the two of (unpolarized) 
inclusive DIS. They depend on two more scalars.


ĥ =
Ph?
|Ph?|
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What is the origin of their names? The second subscript indicate the 
polarization of the target. The first subscript indicate whether polarization of the 
lepton beam is required or not. The cosines and sines indicate what kind of 
azimuthal modulation will be generated in the cross section. 
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ĥ
µ
ĥ
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ĥ
µ
⌘

= �✏
µ⌫
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The last term requires a polarized letpon beam. If the beam is unpolarized, it drops (but
this may not be exactly the case in experiments). The third and fourth terms vanish if we
integrate over the angle �h of the outgoing hadron (but, also in this case, the experimental
acceptance may not be perfect).

Integration of Eq. (3.71) over the transverse momentum Ph? of the outgoing hadron gives
the semi-inclusive deep inelastic scattering cross section
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where we introduced the normalized vector ĥ = Ph?/|Ph?|.
The choice of using the angles as indices for the structure functions is done with hindsight.
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Key points

• Structure functions arise from the combinations of available four-vectors


• They are frame independent


• They are gauge invariant
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FIG. 1: Amplitude for dilepton production in parton model approximation. Both diagrams have to be taken into account.
The spectator systems Xa and Xb of the two hadrons are not detected.

Part of the results presented here were already given in the literature [14, 31, 32, 33], and we comment on other
work during the course of the manuscript. However, to the best of our knowledge, a complete formalism for the
polarized Drell-Yan process has not been worked out before.

The manuscript is organized as follows. In Section II we fix part of our notation and give the general form of the
cross section in the one-photon exchange approximation. Section III contains the decomposition of the hadronic
tensor in terms of basis tensors and structure functions, while in Section IV some discussion on reference frames
is given. In Section V we present the general angular distribution of the polarized Drell-Yan process which can
be derived from the results of Section III in a straightforward manner. Section VI contains the results for the
structure functions in the parton model approximation. We conclude in Section VII.

II. CROSS SECTION IN ONE-PHOTON EXCHANGE APPROXIMATION

To be now specific we consider the dilepton production

Ha(Pa, Sa) + Hb(Pb, Sb) → l−(l,λ) + l+(l′,λ′) + X , (1)

with (Pa, Sa) and (Pb, Sb) denoting the 4-momenta and the spin vectors of the incoming hadrons. One has
P 2

a = M2
a , Pa · Sa = 0, S2

a = −1, and corresponding relations for the second hadron. Throughout this work the
mass of the leptons in the final state is neglected. We will sum over the helicities λ, λ′ of the leptons.

At large invariant mass q of the dilepton pair the process (1) can approximately be described in the Drell-Yan
model [1, 2], which corresponds to the parton model approximation. According to this approach a quark from
hadron Ha and an antiquark from hadron Hb (and vice versa) annihilate into a timelike virtual photon which
subsequently decays into a lepton pair (see Fig. 1).1 This means the process proceeds according to

Ha + Hb → γ∗(q) + X → l− + l+ + X , (2)

where the 4-momentum of the virtual photon is given by q = l + l′.2 Note that the meaning of (2) remains valid
if higher order QCD corrections are taken into account.

In the one-photon exchange approximation the (frame-independent) cross section of the Drell-Yan process is
given by

l0l′0 dσ

d3$l d3$l′
=
α2

em

F q4
LµνWµν , (3)

where

F = 4
√

(Pa · Pb)2 − M2
aM2

b (4)

1 As already mentioned we do not consider weak interaction effects.
2 In our notation the symbol q describes both the 4-momentum of the virtual photon as well as the invariant mass

p

q2 of the dilepton
pair. This should, however, not lead to any confusion.

3

represents the flux of the incoming hadrons. If hadron masses are neglected one can write F = 2s = 2(Pa + Pb)2.
The fine structure constant is related to the elementary charge through αem = e2/4π. In Eq. (3) the quantity
Lµν denotes the spin-averaged leptonic tensor,

Lµν =
∑

λ,λ′

(

ū(l,λ)γµv(l′,λ′)
)(

ū(l,λ)γνv(l′,λ′)
)∗

= 4

(

lµl′ν + lνl′µ −
q2

2
gµν

)

, (5)

while

Wµν(Pa, Sa; Pb, Sb; q) =
1

(2π)4

∫

d4x eiq·x 〈Pa, Sa; Pb, Sb | Jµ
em(0)Jν

em(x) |Pa, Sa; Pb, Sb〉 (6)

is the hadronic tensor, which is determined by the electromagnetic current operator Jµ
em.

The tensor Wµν a priori is unknown and contains the information on the hadron structure. It has to fulfill
certain constraints due to electromagnetic gauge invariance, parity, and hermiticity. In this order the constraints
read

qµWµν(Pa, Sa; Pb, Sb; q) = qνWµν(Pa, Sa; Pb, Sb; q) = 0 , (7)

Wµν(Pa, Sa; Pb, Sb; q) = Wµν(P̄a,−S̄a; P̄b,−S̄b; q̄) , (8)

Wµν(Pa, Sa; Pb, Sb; q) =
[

W νµ(Pa, Sa; Pb, Sb; q)
]∗

, (9)

where the notation v̄µ = vµ for a generic 4-vector v is used. In Section III, by imposing the relations (7)–
(9), the hadronic tensor is decomposed into a set of 48 basis tensors multiplied by scalar functions (structure
functions). In doing so the conditions (7) and (8) considerably reduce the number of allowed basis tensors, while
the hermiticity constraint (9) implies that the structure functions are real. Note that time-reversal does not
impose any constraint on the hadronic tensor, because this operation converts the two-particle hadronic in-state
into a two-particle out-state, and both states are not related. In Section VI the hadronic tensor is considered in
the parton model approximation.

The angular distribution of the Drell-Yan cross section is most conveniently be considered in a dilepton rest
frame like the Collins-Soper frame [27] or the Gottfried-Jackson frame [34]. In any dilepton rest frame, one can
rewrite Eq. (3) according to

dσ

d4q dΩ
=

α2
em

2 F q4
LµνWµν , (10)

where the solid angle Ω specifies the orientation of the leptons. In Section IV we elaborate a bit more on reference
frames with the main focus on the center-of-mass frame (cm-frame) and the Collins-Soper frame (CS-frame).

III. HADRONIC TENSOR

The total hadronic tensor can be decomposed into the unpolarized, single polarized (for hadron Ha and hadron
Hb), and double polarized tensor according to

Wµν = Wµν
u + Wµν

a + Wµν
b + Wµν

ab . (11)

In the following we merely have to consider the symmetric part of Wµν because the spin-averaged leptonic tensor
in (5) is symmetric under the exchange µ ↔ ν.

A. Unpolarized case

Since the unpolarized tensor depends on the 4-vectors qµ, Pµ
a , and Pµ

b one can immediately write down the
tensor basis

hµν
u,1 = gµν ,

hµν
u,2 = qµqν ,
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. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|$Pa,CM |

Ma
, |$SaT,CM | cosφa,CM , |$SaT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|$Pb,CM |

Mb
, |$SbT,CM | cosφb,CM , |$SbT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components $SaT,CM , $SbT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2 +($SaT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=
α2

em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |$SaT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |$SbT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT
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+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because !Pa,CS is not pointing in the z-direction.

Only unpolarized and single-polarized part. 
Different frames (and different definitions of the angles) are in use  
(Collins—Soper, Gottfried—Jackson).  
Structure functions are different if defined in the different frames.
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By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=
α2

em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |$SaT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |$SbT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT

)]

+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because !Pa,CS is not pointing in the z-direction.S. Arnold, Metz, Schlegel, arXiv:0809.2262

Only unpolarized and single-polarized part. 
Different frames (and different definitions of the angles) are in use  
(Collins—Soper, Gottfried—Jackson).  
Structure functions are different if defined in the different frames.
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