SEP Identification Algorithm on AMS low latency data

Francesco Faldi

Bologna, 20-12-2022

AMS Italy

SOLAR ACTIVITY AND SPACE WEATHER

- The solar activity cycle has a period of 11 years, alternating between solar minimum and maximum. - On the Sun's surface occasional and short duration phenomena take place: solar flares and CMEs.
- Solar Energetic Particles (SEPs) can be emitted in these events.
- Space Weather studies the effects of solar phenomena and their interactions with the environment.

SPACE WEATHER WITH AMS

- time the ionizing radiation conditions outside the ISS.
- Each data point is the average trigger rate in one minute, normalized by the livetime.
- Red data points correspond to SEP intervals, according to the algorithm.

- The SEP Identification Algorithm, based on AMS low latency data, could be used to monitor in real

THE IGRF GEOMAGNETIC RIGIDITY CUTOFF

- particles, corresponding to SEP events.

- Rigidity Cutoff lower near magnetic poles —> low energy particles (solar component) can reach Earth - The [cutoff < 2GV] region defines the SEP Sensitivity Zone, in which AMS can detect O[GeV] energy

THE IGRF GEOMAGNETIC RIGIDITY CUTOFF

- AMS is **sensitive** to SEP events during ~6-7 ISS orbits per day and only in polar regions.

- The time fraction spent by AMS within the Sep Sensitive Zone is about 12% of the total exposure time.

OPP - Orbital Precession Period: time to complete one full precession (~ 1 day, 16 orbits)

TRIGGER RATE OVERVIEW

DATA PRESELECTION

- Intervals containing corrupted data
- Intervals associated with the SAA
- Intervals with ISS not in nominal status

SEP IDENTIFICATION ALGORITHM

- The $[0,\infty]$ GV **cutoff interval** is subdivided in **N bins**.
- **Trigger rate quiet level**: mean and standard deviation, for each point, on the previous 5 days.
- The quiet level is calculated separately for each cutoff bin and used to determine the **significance (S)**.

SEP IDENTIFICATION ALGORITHM

The same algorithm was applied to GOES data. NOAA has a database of SEP events based on the same data, using a constant threshold.

- NOAA threshold: flux > 10 pfu
- Our SEP-ID algorithm: flux with S > 7

SEP IDENTIFICATION ALGORITHM

2012								
NOAA	NOAA	AMS	AMS	AMS	GOES	GOES	GOES	
Start Time	P-Flux	Interval	Max	Max	Interval	Max	Max	
	(pfu)			tr.rate			Flux	
				(Hz)			(pfu)	
Jan 23	6310	Jan 23-	Jan 28	4453	Jan 22 -	Jan 24	6310	
Jan 27	796	-Jan 28	same	same	- Feb 3	same	same	
Mar 07	6530	Mar 7-9	Mar 7	110893	Mar 5-	Mar 8	6350	
Mar 13	469	Mar 13	Mar 13	3234	-Mar 17	same	same	
May 17	255	May 17-18	May 17	5111	May 17-20	May 17	255	
May 27	14				May 27-28	May 27	14.8	
Jun 16	14				Jun 16-17	Jun 17	14.9	
Jul 07	25	Jul 8	Jul 8	1963	Jul 7-11	Jul 7	25.2	
Jul 12	96				Jul 12-15	Jul 13	96.1	
Jul 17	136				Jul 17-	Jul 18	136	
Jul 23	12				-Jul 30	same	same	
Sep 01	59				Sep 1-5	Sep 2	59.9	
Sep 28	28				Sep 28-30	Sep 28	28.4	
					Nov 9-10	Nov 9	2.4	
					Dec 14-15	$Dec \ 15$	9.4	

SEP events found by our algorithm on AMS and GOES data are matched with events on the NOAA database

REP IDENTIFICATION WITH CALET

- middle atmosphere.
- CHD: CALET "CHarge Detector", composed by two hodoscope layers of plastic scintillators.

• Relativistic Electron Precipitation (REP): trapped electrons in the geomagnetic field lost into the upper or

1	1	

REP IDENTIFICATION WITH AMS

- The SEP-ID Algorithm was adapted for the REP analysis, using the TRD layers count rates.

• We first used the ratio between the top two TRD layers, selecting a significance threshold equal to 5.

REP IDENTIFICATION WITH CALET

• The ratio between layer 1 and layer 10 is higher for REP, but we see the orbital precession effects

CALET-AMS COMPARISON

MY PHD PROJECT

- Characterization of **temporal evolution** of the cosmic ray flux in quiet periods, during solar storms and follow-up
- Energetic spectra reconstruction of "Solar Energetic Particles" events, which lead to intense emissions of high energy particles in short periods of time
- Study of correlation between charged particle fluxes and solar activity or geomagnetic indexes, during solar storms (solar wind velocity, IMF strength and polarity, ecc...)

- monitoring system.
- The algorithm has been tested even on one-minute root files, without access to RTI data.
- to identify **REP** events.

- AMS low latency data provide enough information to build a real time

- SEP-ID algorithm can also be applied to TRD layers ratio analysis, in order

PROTON FLUX COMPARISON - PASS7, GBATCH

