

Status update on geomagnetic Analysis

Davide Grandi

On behalf of INFN Milano Bicocca group

Bologna, 20 December 2022

Summary

- IGRF Correction Factors from backtracing with TS05
- Possible application to AMS-02 Analisys
 - Average values
 - Solar parameter dependent values
- Secondary Particles
- Solar Flares
- Trapped lons
- Trapped Protons
- Future developments & ideas

Back-tracing in the geomagnetic field

Our GOAL: find IGRF cut-off corrections based on OUR particle back-tracing.

- We performed the back-tracing using GeoMagSphere model (<u>http://www.geomagsphere.org/</u>) developed within the AMS-02 INFN – Milano Bicocca group
- GeoMagSphere is a back-tracing numerical code running IGRF internal field with external Tsyganenko models (in particular Tsyganenko 1996 for quiet periods and Tsyganenko 2005, specifically developed to reproduce the magnetosphere during magnetic storms)
 - Tsyganenko models showed to reproduce with good accuracy the geomagnetic field observations during quiet and disturbed periods.

The Tsyganenko cut-off

In order to determine the cut-off, we used real selected events (in place of generated MC events) in the detector field of view.

- We selected AMS-02 protons between 0.8 GV < R < 100 GV, during quiet and disturbed periods of the solar activity.
- Using GeoMagSphere we back-traced all the selected particles, determining the rigidity distribution of:
 - \succ particles coming from the outer magnetosphere \rightarrow **PRIMARY**
 - \succ particles created in the atmosphere \rightarrow **SECONDARY**
 - \succ particles trapped in the magnetic field lines \rightarrow **TRAPPED**
- The Tsyganenko rigidity cut-off is the upper rigidity cut-off, defined as the highest rigidity for particles identified as secondary
- SO NO PENUMBRA!

Tsyganenko vs IGRF – SF?

Analysis of AMS-02
protons and
evaluation of
possible safety
factor to increase
statistics

Cutoff Estimation Method – J. Feng

• At different geomagnetic cut-offs or locations, we measure the corresponding rates.

• We fit the Rate distribution to measure the cutoff value.

• In this way, we correct the IGRF cut-off model with AMS by Safe Factor = Rigidity/cutoff.

In the present study the correction factor derived in the Inner+L1 geometry, for the Choutko rigidity, maximum value of p and He, has been used.

Geomagnetic cut-off correction factor

Data Selection and strategy

- We selected AMS-02 protons in 2 Bartel Rotations a **quiet one** June/July 2016 and **disturbed one** March/April 2012.
- Using GeoMagSphere we back-traced all the selected particles, with different models:
 - Tsyganenko 2005 and Tsyganeno 96
 - ➢ IGRF
- The Tsyganenko rigidity cut-off is taken as REFERENCE
- IGRF counts are compared with TS05 ones
- Exposure and Rate are then obtained

Which is the factor to be applied to the IGRF cut-off in order to obtain the same event count as using the Tsyganenko cut-off?

Cut-off optimization: IGRF vs. Tsyganenko cut-off

For each rigidity bin, the correction factor is the factor to be applied to the IGRF cut-off in order toInner Tracker + L1match (within 1,2 max 3%) the event count obtained using the Tsyganenko cut-off.geometry

A disturbed period – March 2012

A quiet period – June 2016

The correction factor is rigidity dependent. Moreover it varies according to geomagnetic disturbances.

Geomagnetic cut-off correction factor

Event Counts: direct comparison

Protons

Event Rate: comparison with 1.2×IGRF cut-off

First Conclusions

- We back-traced real events by means of the GeoMagSphere code, in order to estimate the cut-off in the AMS field of view, using realistic models of the geomagnetic field, such as the Tsyganenko models;
- We determined the correction factor to be applied to the IGRF cut-off in order to match (at 1% level) the event count obtained using the Tsyganenko cut-off. The present study as been performed considering two Bartel rotations, during a quiet (June 2016) and a disturbed (March 2012) period;
- The increment in p & He statistics using the corrected cut-off can reach a factor larger than 10 at low rigidities, with respect to the 1.2×IGRF cut-off;
- The agreement between MIB and MIT-JF rate is <0.5% above 1.0GV;
- In addition, peculiar periods with solar energetic particles (SEPs), need a suitable treatment, *i.e.* back-tracing the full sample with Tsyganenko magnetospheric field model.

0.7

IGRF Cut-off Rigidity [GV]

disturbancies (Dst)

AMS-02 data analysis SECONDARY PROTONS

- Back-tracing of secondary protons during March 2012 using GeoMagSphere
- Starting points of secondary trajectories detected close to magnetic equator and magnetic poles
- All graphs are in Geomagnetic coordinates

FINAL POINT = SAME SHOOTING ALTITUDE (AMS02 ONE)

Secondary CR detected at magnetic equator

Close to magnetic equator

Sec final point after BkT; Sec detected in: $-5^{\circ} < \lambda_{mag} < +5^{\circ}$; 25° opening angle; day: March 4, 2012; R<1GV

Close to magnetic equator

Sec final point after BkT; Sec detected in: -5°<λ_{mag}<+5°; 25° opening angle; day: March 6, 2012; R<1GV t=90min

Close to magnetic equator

Sec final point after BkT; Sec detected in: -5°<λ_{mag}<+5°; 25° opening angle; day: March 7, 2012; R<1GV t=90min

Secondary CR detected at magnetic poles

Close to magnetic poles

Sec final point after BkT; Sec detected in: λ_{mag} <-50° && λ_{mag} >+50°; 25° opening angle; day: March 4, 2012 R<1GV – full day

Close to magnetic poles

Sec final point after BkT; Sec detected in: λ_{mag} <-50° && λ_{mag} >+50°; 25° opening angle; day: March 6, 2012 R<1GV; t=90min

Close to magnetic polesSec final point after BkT;Sec detected in: λ_{mag} >+50°;25° opening angle;day: March 6, 2012R<1GV;</td>t=90min

The Magnetosphere & Solar Flares - 2016

March Solar Flares Analysis

•Total of 9 days data taking Inside 25° FOV •Livetime > 0.1•Primary Protons •4,5x10⁷ Particles Secondary Protons •7,9x10⁶ Particles •Trapped Protons •3,1x10⁵ Particles

Trapped Particles – all days from 04/03 to 12/03

Trapped Particles – one day 04/03

Secondary RAW proton Flux

Ratio of Secondary Proton Flux

Trapped and Secondary Proton Flux

Ratio of Trapped and Secondary Proton Flux

Ratio of Fluxes vs time

No Forbush in May even with TS05

January 2012

January 2012

				inaco		
	AMS-02	Solar Event	Flare	CME	From I Hoffman presentation Dec. 2015	
	Event	Date	Class	Vel. (km/s)	110111 J. 11011111all presentation Dec. 2015	
	1	06/07/11	M2.5	1255		
	2	08/04/11	M9.3	1315		
	3	08/09/11	X6.9	1610		
Continued	4	01/23/12	M8.7	2175		
	5	01/27/12	X1.7	2508		
	6	03/07/12	X5.4, X1.3	2684, 1825	All the events observed by AMS-02	
	7	03/13/12	M-class	1884		
	8	05/17/12	M5.1	1582	are associated with M- and X-class	
	9	07/19/12	M7.7	1631		
	10	07/23/12	-	2003	Flares followed by very high speed	
	11	04/11/13	M6.5	861	r larco, lonotroa by vory high opeca	
	12	05/22/13	M5.8	1466	halo CMEs	
	13	10/28/13	M5.1, M2.8, M4.4	1201, 1073, 812		
	14	11/02/13	C8.2*	828		
	15	12/28/13	-	1118		
	16	01/06/14	-	1118	This rainforce the Solar	
	17	01/07/14	X1.2	1830		
	18	02/25/14	X4.9	2147	Origin of these tensors are mi	
	19	09/01/14	-	1404	Origin of these temporary	
	20	09/10/14	X1.0	1267		
			7		Excess/Lack	
					•	
Photo	Photon Observation (X-band)			Photon Observation (optical band)		
С	Of Solar Photosphere				Of Solar Corona	
e.g. u	e.g. using GOES satellite				e.g. using SOHO satellite	

List of Candidates SEP Events

41

Anisotropy?

Separate Solar Particles from GCRStudy arrival directions

Anisotropy? 1-1.16 GV rigidity bin – March 4 2012

Anisotropy? 1-1.16 GV rigidity bin – March 6 2012

Anisotropy? 1-1.16 GV rigidity bin – March 7 2012 - !!!!!

Anisotropy? 1-1.16 GV rigidity bin – March 8 2012

Anisotropy? 1-1.16 GV rigidity bin – March 9 2012

Anisotropy? 1-1.16 GV rigidity bin – March 10 2012

Anisotropy? 1-1.16 GV rigidity bin – March 11 2012

Anisotropy? 1-1.16 GV rigidity bin – March 12 2012

Rigidity Cutoff

IGRF + Tsyganenko 2005

Flux Unfolded

Anisotropy?

•Fake or real?

- •Problem of FOV?
- •Problem of position and inclination?
- •Problem of pile up and livetime?

Preliminary Analysis of Protons detected by AMS-02 inside the South Atlantic Anomaly - 2017

Summary:

- Analysis of CR protons inside SAA region;

Primary, Trapped and Secondary CR behaviour;

Primary CR: Upper cutoff map outside SAA

Primary CR: Upper cutoff map inside SAA

Primary CR: Upper cutoff map outside + inside SAA

Trapped CR: RATE outside SAA

Trapped CR: RATE inside SAA

Trapped CR: RATE outside + inside SAA

L-shell $\rightarrow r = L \cos^2(\lambda_{geomag})$

D. Grandi, D. Rozza: AMS-02 preliminary proton analysis in SAA

Trapped CR: Final position after 10 seconds of backtracing

Trapped CR: Final position after 10 seconds of backtracing

D. Grandi, D. Rozza: AMS-02 preliminary proton analysis in SAA
Trapped CR: Final position after 10 seconds of backtracing

Secondary CR: Rate OUTSIDE vs INSIDE SAA

Secondary CR: Rate OUTSIDE vs INSIDE SAA

Secondary CR: Rate OUTSIDE vs INSIDE SAA

Secondary CR: Creation and Detection positions INSIDE SAA

Secondary CR: DRIFT of protons

Sample of Secondary CR detected inside SAA with t_{BkT} (s) > 3.0 && L < 1.2 (λ_{geomag} < 25°) The paths were computed with GeoMagSphere (MIB-Backtracing code)

www.geomagsphere.org

Analysis on AMS ions in magnetosphere

Data selected by A. Oliva and F. Giovacchini

Backtracing and analysis performed by D. Grandi and D. Rozza

Analysis performed on:

	upgo/down going	upgo3/down3 going
Precision	0.0001	0.0001
Time limit (s)	50	70
Atmosphere limit (km)	100	0
Step limit	500000	500000

Both IGRF and IGRF+TS05 models were used

up-going primaries

up3-going primaries

up-going secondaries

up3-going secondaries

up-going trapped 80% limit acceptance (generate 10 pseudo particles each detected one)

IGRF

TS05

80% of the generated particles are trapped = 966

80% of the generated particles are trapped = 950

up3-going trapped

up-going trapped IGRF

25

h2traRigCharge

10

1

10⁻¹

10

1

10⁻¹

up-going trapped TS05

up3-going trapped IGRF

up3-going trapped TS05

down-going primaries

down3-going primaries

down-going secondaries

down3-going secondaries

down-going trapped

80% limit acceptance (generate 10 pseudo particles each detected one)

IGRF

TS05

down3-going trapped

down-going trapped

IGRF

h2traRigCharge

down-going trapped

1

25 h2traLatGeomagCharge 359 Entries Mean x 0.005881 Mean y 4.641 20 Std Dev x 0.1466 10 Std Dev y 2.064 Charge (Z) 01 5 **10**⁻¹ 0 -0.5 0.5 -1 0 1

Geomagnetic latitude [rad]

h2traLatGeomagCharge

TS05

down3-going trapped

h2traLatGeomagCharge 25 h2traLatGeomagCharge 452 Entries Mean x 0.01246 Mean y 4.765 20 Std Dev x 0.1494 Std Dev y 2.028 10 Charge (Z) 01 1 5 **10**⁻¹ 0 -0.5 0.5 -1 0 1

Geomagnetic latitude [rad]

IGRF

down3-going trapped TS05

25 h2traLatGeomagCharge 439 Entries Mean x 0.01215 Mean y 4.772 20 Std Dev x 0.1502 Std Dev y 2.038 10 Charge (Z) 01 5 **10**⁻¹ 0 -0.5 0.5 -1 0 1

Geomagnetic latitude [rad]

h2traLatGeomagCharge

Preliminary Conclusions:

- Primary CR with TS05 are higher than IGRF of about 2-3%
- Secondary CR with TS05 are lower than IGRF of about 3-7%
- Trapped CR with TS05 are lower than IGRF of about 1-3%
- Trapped CR are recognised as trapped inside 1% generating other 10 particles with different direction and requiring 80% of them reconstructed as trapped
- We have two different population with R < 1GV and R > 1GV

FUTURE DEVELOPMENTS (?)

- Select Solar Flares periods during all AMS-02 so 11 year mission
- Select protons in NAIA
- Backtracing of protons with Geomagsphere and TS05
- Both inside and outside SAA
- Extract informations about trapped and primary CR
- Trapped to be checked with IONS (A. Oliva)
- Primary (low energy) to be checked with Hawaii (C. Consolandi)
- Eventually possible to study the anisotropy during Solar Flares