

$B_{s}^{0} \rightarrow D_{s}K$ benchmark with IDEA

G Mezzadri, Marco Scodeggio – INFN Ferrara, and Federica Cuna – INFN Lecce and Uni Salento gmezzadr@fe.infn.it

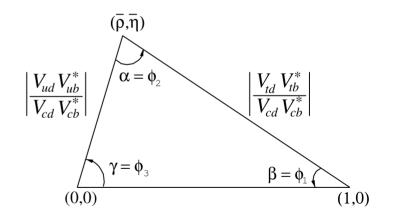
Italy-France FCC workshop - 22/11/2022 - Lyon

Flavor Physics at FCC-ee

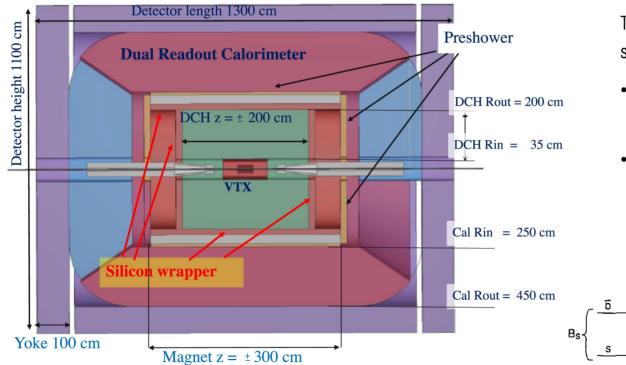
CKM unitarity triangle is a stepping stone for flavor physics

- Any deviation from unitarity would lead to physics beyond standard model
- At the end of HL-LHC and Belle2 programs, γ angle will be known with ~1° error

FCC-ee will be a Tera-Z factory

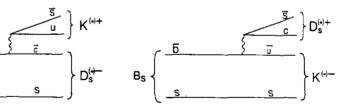

- CKM analyses can be performed by studying $\mathbf{Z} \rightarrow \mathbf{b}\overline{\mathbf{b}}$
- This will result in:
 - 75 Billions B_s⁰,
 - 310 Billions B^o

This work aims to understand the feasibility of


1. $B_s^{0} \rightarrow D_s K$ 2. $B_s^{0} \rightarrow J/\psi \Phi$ (*later*)

With the B_s^{0} sample, FCC can measure:

- * γ with a precision of 0.4°
- β_s with a precision of (3.4x10⁻²)°



Flavor Physics with IDEA

This work makes use of fast and full simulations of **IDEA detector**:

- to establish impact of tracking and
 PID and guide further developments
- to estimate the **sensitivity** of
 - $\varphi = \gamma_{CKM} + \gamma_{ds} 2\beta_s$ with $B_s \rightarrow DK$
 - $2\beta_s$ with $B_s \rightarrow J/\psi \Phi$

The work is performed in FCC analyses framework: key4HEP/EDM4HEP

 $B_{c} \rightarrow D_{c}K$

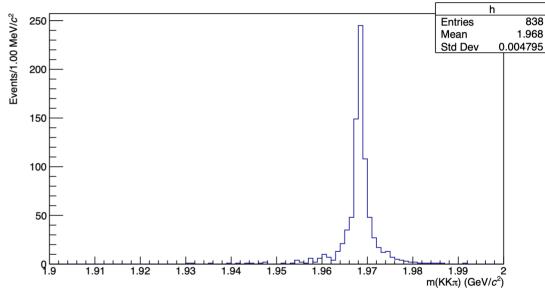
- Final state of interest is $D_s \rightarrow \Phi \pi$ + bachelor K, with $\Phi \rightarrow KK$.
- Generated 10k events at Z peak, exclusive $Z \rightarrow b\overline{b}$.
 - One b hadronizes in B_s, the other goes inclusively
 - Old (Winter `21) DELPHES generation.
- In order to study the impact, two approaches:
 1) Truth-matching (TM)
 2) Reconstruction

Decay B_s0 1.000 MyD_s- K+ PHSP; Enddecay CDecay anti-B_s0 Decay MyD_s-1.000 Myphi pi- PHSP; Enddecay CDecay MyD_s+ Decay Myphi 1.000 K+ K- VSS; Enddecay End

• Generated also main backgrounds and tested with the reconstruction routines

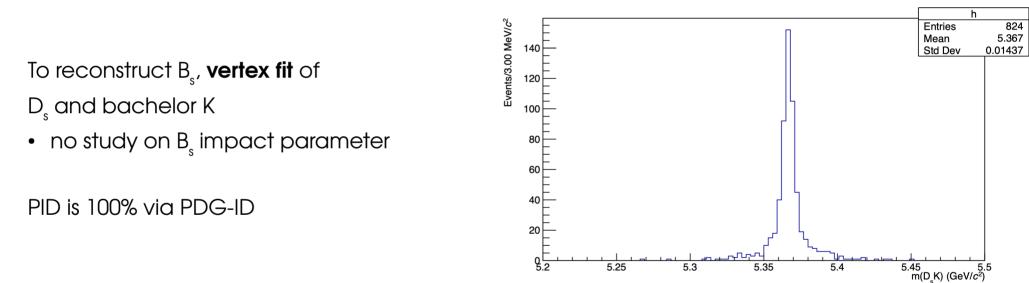
Results with TM - D_s

Apply few general selections

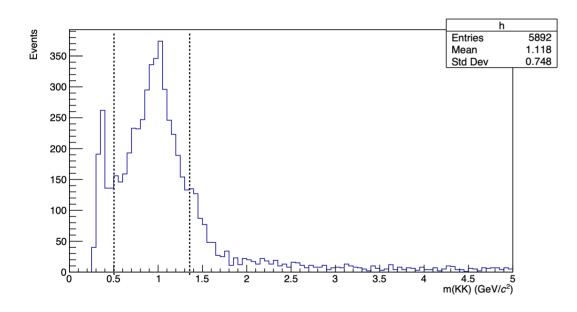

- $Q_{tot} = 0$
- N_K≥3
- N_π ≥ 1
- Q_{KK} = 0

 Φ and prompt Kaons are already separated

To reconstruct $\mathsf{D}_{\!_{s}},$ apply vertex fit to KK π tracks


PID is 100% via PDG-ID

Reconstructed D[±]s mass

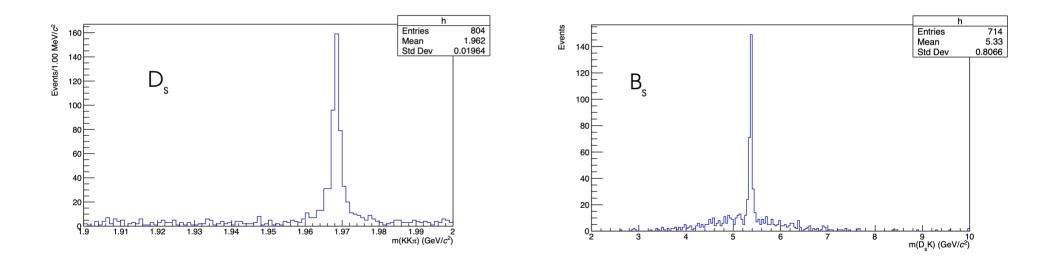


Results with TM - B_s

Reconstructed Bs⁰ mass

Result with Reconstruction

Apply few general selections


- Q_{tot} = 0
- N_K≥3
- N_π ≥ 1
- Q_{KK} = 0

Study the **KK invariant** mass to identify **prompt** and Φ **kaons**

PID is 100% via PDG-ID

Result with Reconstruction – D_s and B_s

By applying a similar procedure as in the TM case, we identify D_s and B_s candidates. We add a loose selection on D_s candidates mass 1.9 GeV/c² < mass($\Phi\pi$) < 2 GeV/c²

Main backgrounds

500k events generated and analysed with the same routines

Main mode	Decay chain	Background	Decay chain
		mode	
$B_s \rightarrow D_s^{\pm} K^{\mp}$	$D_{s}^{\pm} \to \phi \pi^{\pm}, \phi \to K^{+}K^{-}$ $D_{s}^{\pm} \to \phi \rho^{\pm}, \phi \to K^{+}K^{-}$	$B_s \rightarrow D_s^{*\pm} K^{\mp}$	$D_s^{*\pm} \rightarrow \gamma \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-$	u	$D_s^{*\pm} \rightarrow \gamma \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$B_s \to D_s^{\pm} K^{*\mp}$	$D_s^{\pm} \to \phi \pi^{\pm}, \phi \to K^+ K^-, K^{*\mp} \to K^{\mp} \pi^0$
		u	$D^{\pm}_{-} \rightarrow \phi \rho^{\pm} \phi \rightarrow K^{+} K^{-} \rho^{\pm} \rightarrow \pi^{\pm} \pi^{0} K^{*\mp} \rightarrow K^{\mp} \pi^{0}$
		$B_s \rightarrow D_s^{\pm} \pi^{\mp}$	$D_s^{\pm} \to \phi \pi^{\pm}, \phi \to K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$B_s \rightarrow D_s^{\pm} \rho^{\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\mp} \rightarrow \pi^{\mp} \pi^0$
		$B^0 \rightarrow D_s^{\pm} K^{\mp}$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$\Lambda_b^0 \to D_s^- p^+$	$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \phi \rightarrow K^+ K^-$
		"	$D_s^{\pm} \rightarrow \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$
		$\Lambda_b^0 \to D_s^{*-} p^+$	$D_s^{\pm} \to \gamma \phi \pi^{\pm}, \phi \to K^+ K^-$
		"	$D_s^{\pm} \rightarrow \gamma \phi \rho^{\pm}, \phi \rightarrow K^+ K^-, \rho^{\pm} \rightarrow \pi^{\pm} \pi^0$

Delphes FCCee Physic events dev production (IDEA with Track Covariance full matrix lower triangle) http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_dev_IDEA.php

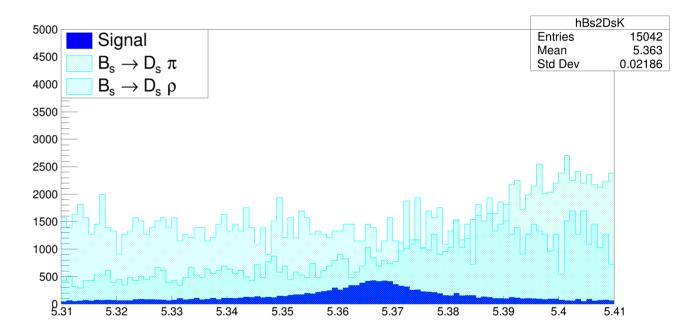
9

Background results

Largest contribution from:

- $B_s \rightarrow D_s \pi$
- $B_s \rightarrow D_s \rho$

Mainly from combinatorial

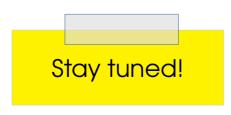

Negligible for other cases

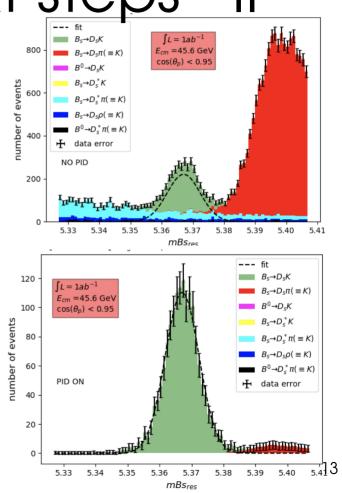
Add an additional selection: $\Phi \rightarrow KK$ vertexing in order to try to reduce the bkgs

Results

	$B^{0_{s}} \rightarrow D_{s}K$	$B^{0_{s}} \rightarrow D_{s}\pi$	$B^{0}_{s} \rightarrow D_{s}\rho$
Base Selection	13604	109271	214622
$\phi \rightarrow KK$ vertexing	15042	103285	136776

Signal peaking at correct mass, but background seems higher.




Summary and next steps - I

- First fast simulation of $B_s \rightarrow D_s$ K benchmark for flavor physics prepared
- With perfect PID, preliminary vertexing and tracking:
 - Good reconstruction of B_s candidate
 - Large source of combinatorial background from 2 B_s decays with larger branching ratio
 - Some clever strategy is needed to further suppress those contributions (hemisphere selection, impact parameters)
 - A new version of vertexing is now available to further improve this result

Summary and next steps - II

- Run the full simulation with GEANT4 IDEA detector
- Add a more realistic PID
- Reproduce results of arXiv: 2107.02002 with EDM4HEP

