Muon detector technology R&D

Paolo Giacomelli INFN Bologna

CDR: 2 Detector concepts

"Proof of principle concepts"

Not necessarily matching (all) detector requirements, which are still being spelled out

CLD

- Based on CLIC detector design; profits from technology developments carried out for LCs
 - All silicon vertex detector and tracker
 - □ 3D-imaging highly-granular calorimeter system
 - □ Coil *outside* calorimeter system
 - Muon system made of RPC layers embedded in the iron yoke

IDEA

- New, innovative, possibly more cost-effective concept
- □ Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- □ Thin and light solenoid coil *inside* calorimeter system
- $\hfill\Box$ Muon system made of 3 layers of $\mu RWell$ detectors in the return yoke

https://arxiv.org/abs/1911.12230, https://arxiv.org/abs/1905.02520

https://pos.sissa.it/390/

Detector concepts fast overview

CLD

- Well established design
 - ILC -> CLIC detector -> CLD
- Engineering needed to make able to operate with continous beam (no pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations?
 - σ_p/p , σ_E/E
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?
 - ...
- Robust software stack
 - Now ported (wrapped) to FCCSW

IDEA

- Less established design
 - But still ~15y history: 4th Concept
- Developed by very active community
 - Prototype construction / test beam campaigns
 - Italy, Korea, France, Switzerland, USA, ...
- Is IDEA really two concepts? Or will it be?
 - w, w/o crystals
- Software under active development
 - Being ported to FCCSW

Noble Liquid ECAL based

- A design in its infancy
- High granul Noble Liquid ECAL is the core
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies
- Full simulation of ECAL available in FCCSW

CLD Muon Detector

- ► 2 Tesla Solenoid Field
- Return yoke contains Muon system with
- 6 equidistant layers
 - One additional layer after the solenoid to serve as a *tail-catcher*

gas gap 4-7 mm

DLC layer (0.1-0.2 μm)

R ~10 -200 MΩ/□

Copper top layer (5µm)

Rigid PCB readout electrode

Muon detector

Muon system in instrumented return yoke

- □ 3-7 layers being considered: 3000-6000 m²
- □ Proposed technologies
 - * RPC ($30 \times 30 \text{ mm}^2 \text{ cells}$)
 - Crossed scintillator bars
 - * μ -RWell chambers (1.5 × 500 mm² cells)
 - Also for IDEA pre-shower detector

Well pitch: 140 µm

Well diameter: 70-50 µm

Kapton thickness: 50 μm

Drift/cathode PCB

Ongoing R&D work

CLD Muon system

- 6 layers of RPC muon chambers inside yoke
 - Cell size: $30 \times 30 \text{ mm}^2$

IDEA Muon system

- \bullet 3 layers of μ -RWell chambers inside yoke
 - Cell size: 1.5 × 500 mm²
 - Detector size: 500 x 500 mm²

μ**-RWELL**

IDEA: Preshower and muon detector

Preshower Detector

High resolution before the magnet to improve cluster reconstruction

Efficiency > 98%

Space Resolution < 100 μm

Mass production

Optimization of FEE channels/cost

Similar design for the Muon detector

Similar design for the Muon detector

Muon Detector

Identify muons and search for LLPs

 $Efficiency > 98\% \\ Space Resolution < 400 \ \mu m \\ Mass production \\ Optimization of FEE channels/cost$

Detector technology: µ-RWELL

50x50 cm² 2D tiles to cover more than 4330 m²

Preshower

pitch = 0.4 mm

FEE capacitance = 70 pF

1.5 million channels

<u>Muon</u>

pitch = 1.5 mm

FEE capacitance = 270 pF

5 million channels

μ-RWELL technology

INF BOLOGNA FERRARA TORINO

The μ -RWELL is composed of only two elements:

- μ-RWELL_PCB
- drift/cathode PCB defining the gas gap

µ-RWELL_PCB = amplification-stage ⊕ resistive stage ⊕ readout PCB

μ-RWELL operation:

- A charged particle ionises the gas between the two detector elements
- Primary electrons drift towards the μ -RWELL_PCB (anode) where they are multiplied, while ions drift to the cathode
- The signal is induced capacitively, through the DLC layer, to the readout PCB
- HV is applied between the Anode and Cathode PCB electrodes
- HV is also applied to the copper layer on the top of the kapton foil, providing the amplification field

(*) G. Bencivenni et al., "The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD", 2015_JINST_10_P02008)

IDEA: μ-RWELL performances overview

Resistivity validation

strips

R&D to identify optimal DLC resistivity by studying spatial performance

Preshower: 10, 30, 50, 70, > 100-200 MOhm/square

Muon: 15, 35 MOhm/square

Effect of resistivity on charge spread

Test beam performed in October 2021 at SPS-H8 CERN line

Instrumented 5x40 cm 2 1D μ -RWELL modules with SRS DAQ and APV readout to have a comparison with previous results

G.Bencivenni et al., "Performance of μ -RWELL detector vs resistivity of the resistive stage", NIM A 886 (2018) 36

IDEA: μ-RWELL Test beam 2021

140-180 GeV/c muon and pion beam Operated in Ar/CO₂/CF₄ (45/15/40)

New µ-RWELL prototypes with 40 cm long strips (1D readout)

- a) Design optimization:
- different HV filter applied
- b) Detector characterization
- HV scan at 0°
- HV scan at different angles and drift field

7 μ-RWELL prototypes with resistivity varying between
 10 and 80 MOhm/□
 will allow to define best resistivity for final 50x50 cm² detector

Test beam 2021 preliminary results

2D μ -RWELL R&D for 2022-2023

2 stacked 1D μ-RWELL

1 view per μ-RWELL

μ-RWELL with strips on top and anode

HV on DLC, TOP to ground

Y coordinate on TOP of the amplification stage

Easy production technology for both layout 2D space resolution to be measured with beam test

μ-RWELL R&D 2022-2023 preliminary results

2D beam spot

Efficiency

Technology transfer with ELTOS

DLC sputtering with new INFN-CERN machine @ CERN

Step 1: producing μ-RWELL_PCB

- with top patterned (pad/strip)
- without bottom patterned

Step 2: DLC patterning

- in ELTOS with BRUSHING-machine

Step 3: DLC foil gluing on PCB

- double 106-prepreg (~2x50 μ m thick) (already used in ELTOS)
- pre-smoothing + 106-prepreg (~50 μm thick)
- single 1080-prepreg (~75 μm thick)

Step 4: top copper patterning

Step 5: Kapton etching on small PCB

Finalization

Detector @ CERN for final preparation

IDEA: Test with TIGER electronics

Table 2Measured performance of the TIGER ASIC.

Parameters	Values
Input charge	5-55 fC
TDC resolution	30 ps RMS
Time-walk (5-55 fC range)	12 ns
Average gain	10.75 mV/fC
Nonlinearity (5-55 fC range)	0.5%
RMS gain dispersion	3.5%
Noise floor (ENC)	$1500 \ e^-$
Noise slope	$10 e^-/pF$
Maximum power consumption	12 mW/ch

Test with TIGER ASIC

Developed for BESIII CGEM-IT

Prepare new readout card based on System On Modules (SOM)

<u>Aim</u>

Develop dedicated ASIC for μ -RWELL (AIDAinnova task 11.3)

CIRCULAR COLLIDER CONCLUSIONS

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - ◆ CLD, IDEA and a LAr-based detector

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells
 - Significant R&D is ongoing since 4-5 years, foresee another 3-4 years to finalise the design

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells
 - Significant R&D is ongoing since 4-5 years, foresee another 3-4 years to finalise the design
 - CLD foresees a muon detector made of 6 stations of RPC detectors

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells
 - Significant R&D is ongoing since 4-5 years, foresee another 3-4 years to finalise the design
 - CLD foresees a muon detector made of 6 stations of RPC detectors
 - Unfortunately no R&D is ongoing on this design

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - ◆ CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells
 - Significant R&D is ongoing since 4-5 years, foresee another 3-4 years to finalise the design
 - CLD foresees a muon detector made of 6 stations of RPC detectors
 - Unfortunately no R&D is ongoing on this design
 - LAs-based detector concept has not yet made clear plans of their muon system

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells
 - Significant R&D is ongoing since 4-5 years, foresee another 3-4 years to finalise the design
 - CLD foresees a muon detector made of 6 stations of RPC detectors
 - Unfortunately no R&D is ongoing on this design
 - LAs-based detector concept has not yet made clear plans of their muon system
 - Could be a RPC-based or a scintillator-based system. No R&D activity at the moment

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
 - Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells
 - Significant R&D is ongoing since 4-5 years, foresee another 3-4 years to finalise the design
 - CLD foresees a muon detector made of 6 stations of RPC detectors
 - Unfortunately no R&D is ongoing on this design
 - LAs-based detector concept has not yet made clear plans of their muon system
 - Could be a RPC-based or a scintillator-based system. No R&D activity at the moment
 - For the time being IDEA is the most active on hardware studies and developments

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
- ◆ For the time being 3 detector concepts have been presented
 - CLD, IDEA and a LAr-based detector
- Fig. IDEA proposes a muon detector made of three stations of high precision μ-RWell detectors
 - Fach station is made of a mosaic of hundreds of 50x50 cm² μ-RWells
 - Significant R&D is ongoing since 4-5 years, foresee another 3-4 years to finalise the design
- CLD foresees a muon detector made of 6 stations of RPC detectors
 - Unfortunately no R&D is ongoing on this design
- LAs-based detector concept has not yet made clear plans of their muon system
 - Could be a RPC-based or a scintillator-based system. No R&D activity at the moment
- For the time being IDEA is the most active on hardware studies and developments
 - Profiting from several national funding schemes, EU projects (AIDAinnova, EURO-LABS), etc.

Backup

μ-RWELL-based detectors

2022-2024 R&D program

- \triangleright Define the best resistivity of the DLC for both μ RWELL fundamental tiles and build the 50×50 cm² prototypes for the pre-shower and muon systems.
- > Optimize the engineering mass construction process together with the ELTOS industry.
- Provelop a custom-made ASIC for the μ RWELL with the experience obtained from the TIGER chip and to test the μ RWELL prototypes.
- \triangleright Develop a new reconstruction algorithm, ML-based, to improve the resolution of μ RWELL.
- ➤ Simulation of the CEPC decay channels of interest to optimize the detector design with special emphasis on Long Lived Particles to show the impact of a performing tracked in the muon system instead of a tagger.

Development of a new ASIC

- Two large microRWell chambers M4 in Bologna;
- Ferrara has procured the Tiger electronics;
- Plan to start equipping the M4s with the TIGER next spring;
- Use a cosmic telescope to characterize the detector and the electronics and later to expose the chamber with the TIGER electronics to a test beam;
- Funding received to develop a new ASIC starting from the experience of the TIGER.