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Current baseline detector concepts
for future e*e” colliders

Two main baseline concepts for general purpose detectors
at future e*e" colliders:

e CLD: Sampling calorimeters with silicon / plastic scintillators
active elements interleaved with tungsten / steel

O  Exploiting high granularity for particle flow algorithms (combining
tracker and calorimeter exploiting topological information)

e IDEA: Sampling calorimeters with ~2 m long scintillating

(plastic) and cherenkov fibers inside absorber groove
o  Exploiting the dual-readout approach (correct for EM fluctuations
in hadronic shower developments)

e EM energy resolution is far from that of state-of-the-art
homogeneous crystal calorimeters (1-3%/E)

M.Aleksa et al., Calorimetry at FCC-ee,
Eur. Phys. J. Plus 136, 1066 (2021)
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https://doi.org/10.1140/epjp/s13360-021-02034-2

Potential for high EM
energy resolution

A calorimeter with 3%/VE EM energy resolution

has the potential to improve event
reconstruction and expand the landscape
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of possible physics studies at e*e” colliders

e CP violation studies with B_ decay
to final states with low energy photons

e Clustering of %’s photons to improve
performance of jet clustering algorithms

e Improve the resolution of the recoil
mass signal from Z—ee decays
to ~80% of that from Z— pu decays
(recovering Brem photons)
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https://arxiv.org/abs/1811.10545
https://arxiv.org/abs/2107.05311
https://doi.org/10.1088/1748-0221/15/11/P11005

Technological progress in the field of scintillators
—— and photodetectors has enabled the design of a
cost-effective and highly performant calorimeter

"] Excellent energy resolution to photons and neutral hadrons
(~3%/NE and ~30%/E respectively)

l” Separate readout of scintillation and Cherenkov light “Maximum
(to exploit dual-readout technique for hadron resolution and linearity) information”
calorimetry

> (60: %21 E.CIS)

"] Precise time tagging for both MIPs and EM showers
(time resolution better than 30 ps)



Conceptual layout
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e Transverse and longitudinal segmentation optimized
for particle identification and particle flow algorithms
e Exploiting SiPM readout for contained cost and power budget

(High precision EM
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Implementation of dual-readout
In the crystal section

Simultaneous readout of scintillation and

Cherenkov light from the rear segment

with dedicated SiPMs+wavelength filters
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Rear crystal ECAL segment:

Two 4x4 mm? SiPMs with optical
filters optimized for scintillation and
cherenkov detection resp.

Front crystal ECAL segment:
Single 5x5 mm? SiPM per crystal
optimized for scintillation light detection
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The dual-readout method in a hybrid calorimeter
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Integration of crystal EM calorimeter
in 411 Geant4 IDEA simulation

e Barrel crystal section inside solenoid volume

e Granularity: 1x1 cm? PWO segmented crystals
® Radial envelope: ~ 1.8-2.0 m
® ECAL readout channels: ~1.8M (including DR)
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neutral hadron
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https://iopscience.iop.org/article/10.1088/1748-0221/17/06/P06008
https://iopscience.iop.org/article/10.1088/1748-0221/17/06/P06008

Jet resolution: with and without DR-pPFA

Jet energy resolution and linearity
as a function of jet energy in
off-shell e*e"—Z*—jj events (at
different center-of-mass energies):
e crystals + IDEA w/o DRO
e crystals + IDEAw/ DRO

e crystals + IDEA w/ DRO + pPFA

Jet resolution
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Jet linearity
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Sensible improvement in jet resolution using dual-readout information combined
with a particle flow approach — 3-4% for jet energies above 50 GeV

Ongoing effort to repeat the study with full simulation including tracker and with
edm4hep data format: see talk from A.D’Onofrio in the afternoon
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BGO crystals (S=1x1 cmz), Teflon wrapped, grease coupling

Ongoing R&D: calorimeter cell optimization s _; -
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Ongoing R&D: dual-readout challenge

Multi-signal readout challenges: e

optical filters in the
SiPM window?

e Challenging dynamic range and photon
sensitivity with SiPMs

e Reasonable scintillation and cherenkov light
yields (>2000 phe/GeV and >100 phe/GeV resp.)

e Good separation of scintillation and

cherenkov signals (e.g. based on thin [T J——
® r filtter ; 518
wavelength filters) g2
Exploring crystal candidates with high A
Cherenkov yield and density (PWO, BGO, BSO) |
e See also optimization study of BGSO crystals “ i "";é.c%/s;za/, &/MA 10:2(252’2@9655'2’7’”
R.Cala et al, NIM A 1032 (2022) 166527 13 L VAV, S N,
qc;_s l1(1)‘:3I = ‘1(')7‘ = I1(1)8l = |1(;9' : I11|0l — l1%1l = l112 12
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https://www.sciencedirect.com/science/article/pii/S0168900222001334?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0168900222001334?via%3Dihub

Summary

e EM energy resolution at the 1-3%/VE level can expand the physics potential of
e*e” collider experiments providing enhanced sensitivity to low energy photons

e Adual-readout hybrid calorimeter (homogeneous crystals + fibers in brass tubes)
can meet the requirements of EM, HAD and jet energy resolution (through the
development of dedicated dual-readout particle flow algorithms)

e Growing national and international efforts (INFN MiB&Napoli, Calvision in US,
Lab27 at CERN) to address R&D challenges and development of simulation tools

to optimize a cost-effective calorimeter design
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Additional material
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Outlook and next steps

e Hardware / prototyping:

o O O O O

Identification of best crystal and SiPM candidates (+ wavelength filters)
Optimization of calorimeter cell design (geometry)

Demonstration of S and C light outputs

Proof-of-concept of dual-readout functionality with cosmic ray bench
Towards EM calorimeter module prototype for beam test

e Software / simulation

(@)

Migration of crystal calorimeter simulation in the latest IDEA Geant4 simulation

with the edm4hep data format

Development of a DD4HEP version of the crystal geometry

Continue development of dedicated DR-PFlow algorithms with full detector simulation
Explore physics benchmarks benefiting from high energy resolution for photons

15



A poor S (scintillation signal) impacts
the hadron (and EM) resolution
stochastic terms:

o S>400 phe/GeV

A poor C (Cherenkov signal) impacts
the C/S and thus the precision of the
event-by-event DRO correction

o C>60phe/GeV

SCEPCal layout choices (granularity
and SiPM size) provide sufficient
light collection efficiency
o  Need experimental validation
with lab and beam tests

o /E

ECAL+HCAL DRO (stoch. term)
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Impact of high EM resolution on reconstruction and physics
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Counts

High photon resolution potential for PFA

e Many photons from 1° decay are emitted at a ~20-35° angle wrt to the jet momentum
and can get scrambled across neighboring jets
e Effect particularly pronounced in 4 and 6 jets topologies
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A graph-based algorithm for 1r° clustering

e A high EM resolution enables efficient clustering of photons from %s

Large fraction of T° photons correctly clustered with good ofing

— ~90% for ~3%/(E) vs 50% for ~30%/(E)

Large fraction of “fake m%’s”reconstructed with poor Ocy

— ~50% for ~30%/N(E) vs 10% with ~3%/~(E)

O
O
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Improvements in photon-to-jet correct assignment

Frequency of perfect photon assignment

High e.m. resolution enables photons clustering into s by reducing their angular
spread with respect to the corresponding jet momentum
Improvements in the fraction of photons correctly clustered to a jet sizable only
for e.m. resolutions of ~3%/~(E)

HepSim
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[ = All jets (no 7° clustering) HZ->qqgqqq
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More details in:
https://doi.org/10.1088/1

748-0221/15/11/P11005
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https://doi.org/10.1088/1748-0221/15/11/P11005

Recovery of Bremsstrahlung photons

Geant4 simulation

. . . .. —0.03F
e Reconstruction of the Higgs boson mass and width from the recoil § [ —xx™-01 45 GeV electrons
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https://arxiv.org/abs/1811.10545

number of events

Studies of CP violation and EW physics at e*e” colliders
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https://indico.cern.ch/event/932973/contributions/4080437/attachments/2140718/3607239/FCCee-week-2020_Calorimetry.pdf
https://indico.cern.ch/event/932973/contributions/4080437/attachments/2140718/3607239/FCCee-week-2020_Calorimetry.pdf

More on DR-pPFA
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Single particle identification through “hits-topology’

%
¥ 't L,
HCAL f“
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107"

10

KOL

Typical PFA with Si-W high
granularity calorimeter

DR-pPFA with high resolution
DRO calorimeter

A moderate longitudinal segmentation, fine transverse granularity and the highest
energy resolution for single particle identification
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A different basis for a DR-oriented PF algorithm

e Could the better energy linearity and resolution
offset the coarser longitudinal segmentation?

Moderate longitudinal segmentation
(helpful to identify and measure the
11° component of jets)

High granularity Fiber-based ( Hybrid crystal )
Si/W ECAL and dual-readout § and dual-readout
scintillator based HCAL | calorimeter calorimeter
N. of longitudinal layers i > 40 1 5 .
ECAL cell cross-section 25-100 mm? 2 . 100 mm?
HCAL cell cross-section 100-900 mm? Al 400-2500 mm?
EM energy resolution 15— 25%/VE 10 — 15%/VE ~ 3% /VE
HAD energy resolution 45 — 55%/VE 25 — 30%/VE \ ~ 25 - 30%/VE J

Highest energy resolution and linearity

Highest longitudinal segmentation

Highest transverse segmentation:

full potential (e.g. using neural
networks) yet unexplored
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Dual-Readout Particle Flow Algorithm for jet reconstruction

e Maximally exploit the information from the crystal ECAL for classification of EM clusters and use it
as a linchpin to provide stronger criteria in matching to the tracking and hadron calorimeter hits

e Exploit the high resolution and linear response of the hybrid dual-readout calorimeter to
improve precision of the track-calo hits matching in a particle flow approach

= =)
N\
Charged tracks which \
Al cha(r'\gﬂecd) Uscks HE=EMS Char%\e}'dct)racks @ have fully matched to @
calo hits )
1 R ProtoPFA )
ECAL Calo S Hits [ algorithm | ECAL Calo S Hits Jet.
identified as photons with DRO identified as photons clustering
) Y, algorithm
All ECAL Calo hits if E>E,, o . (Swap out with DRO
ECAL Calo S & C Hits calo hits
NOT identified as photons m:rt]‘::::;°
) .
tracks) ECAL and HCAL hits
not matched to any
charged track J
. 4
[ All HCAL Calo hits 1 FE*Eg e [ HCAL Calo hits ]7
More details in: arXiV 2202.0.1474
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https://arxiv.org/abs/2202.01474

Step 1) Identification of photon hits

Projective sum of hits in the crystal segments

e Calorimeter hits in the crystal

‘% 0']: : segments are analyzed
0090 . e Neutral seeds are identified as hits
o > 3 above a certain threshold and which
‘ . have no charged track pointing to them
i S T A e Hits within a cone of R<0.013 are
_o.f- * | clustered around the “photon seeds”
_0_15; M cosesse, e Such “photon hits” do not take part to
x & T e step 2 (association of calorimeter hits
_0'20?3' e ': .'0!7' ~ 675 os T ose os with charged tracks)

*longitudinal segmentation (EM crystal section)
is crucial for this step



Step 2) Association of calorimeter hits to charged tracks

Projective sum of hits in the crystal segments
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0 [rad]

e Calorimeter hits in both calorimeter
segments are parsed

e Hits are associated to tracks based on
their distance from a certain track

e Successful match: if the sum of the
energy of hits associated to a track is
within 10 from the expected track
signal the calorimeter hits are replaced
with the track momentum

*dual-readout is used here to correct energy of clustered
calorimeter hits and improve track-hit matching 2s



Step 3) Jet clustering

e The jet clustering algorithm* is fed with the collection of

o  All photon hits (from step 1)
o Acollection of tracks
m charged particles not reaching the calorimeter
m tracks that were swapped with calorimeter hits at step 2
o All the other calorimeter hits (both ECAL and HCAL) that have not been swapped out

e The algorithm clusters the 4 momentum vectors into two jets
e The jet energy (“non-swapped hadron” component) is corrected with DRO™*

Ejet = CPFA ° [Z Ehits,y + Z Etracks % Z Ehits,lef tover,DRO]

*FASTJET package: generalized k. algorithm with R=21r **dual-readout is used here to correct energy of calorimeter hits
and p=1 (ee_genkt_algorithm), force number of jets to 2 which have not been matched to tracks (e.g. neutral hadrons) 29



