Cosmological tensions guiding the path beyond ACDM

Late time solutions to H_0 and σ_8

Jann Zosso

L. Heisenberg, H. Villarrubia-Rojo, JZ - arXiv:2201.11623 and arXiv:2202.01202

DAark Energy, Frascati 2023 - September 13th

E *H* zürich

OUTLINE

- 1. Introduction
 - H_0 and σ_8 tensions
- 2. General model agnostic method
 - Generic late time modifications of expansion history
 - Analytic response functions
- 3. Results
 - Necessary conditions on modifications
 - Example:
 - Dark energy fluid model
 - Implications on beyond GR
 - Beyond background modifications

Basis:

General relativity Background homogeneity and isotropy Particle physics

Ingredients: Cosmological constant Λ Cold dark matter (CDM) Inflation

Parameters: <

 $\left\{ H_0, \Omega_m, \Omega_b, \tau_{\text{reio}}, A_s, n_s \right\}$

only 6 free parameters

Fundamental observations

Expansion rate today **Fundamental observations** $H_0 \equiv 100 \ h \ \rm km \, s^{-1} \, Mpc^{-1}$ Direct/local $d(z) = rac{z}{H_0} + \mathcal{O}ig(z^2ig)$ Distance redshift relation d = ccf. talk by

[SLOAN DIGITAL SKY SURVEY (SDSS)]

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys
 large scale structure (LSS)

 $\frac{\mathrm{d}z}{H}$

d = c

 σ_8^2

 $d(z) = rac{z}{H_0} + \mathcal{O}ig(z^2ig)$

Fundamental observations

Direct/local

Distance redshift relation

d = c

 σ_8^2

Galaxy surveys / tracers
 large scale structure (LSS)

matter overdensities

$$\delta_m \equiv \frac{\rho_m(t, \boldsymbol{x}) - \langle \rho_m \rangle(t)}{\langle \rho_m \rangle(t)}$$

smoothing

$$\delta_R \equiv \int_{|\boldsymbol{x}-\boldsymbol{x}'| < R} \delta_m(\boldsymbol{x}') \frac{\mathrm{d}^3 \boldsymbol{x}'}{V}$$

[Millenium Simulation]

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys / tracers large scale structure (LSS)

matter overdensities

$$\delta_m \equiv \frac{\rho_m(t, \boldsymbol{x}) - \langle \rho_m \rangle(t)}{\langle \rho_m \rangle(t)}$$

smoothing

$$\delta_R \equiv \int_{|\boldsymbol{x}-\boldsymbol{x}'|< R} \delta_m(\boldsymbol{x}') \frac{\mathrm{d}^3 \boldsymbol{x}'}{V}$$

$$d = c \int \frac{dz}{H} \implies d(z) = \frac{z}{H_0} + \mathcal{O}(z^2)$$

$$\sigma_8^2 \equiv \langle \delta_R^2(x) \rangle , \quad R = 8 \text{ Mpc}/h$$
Cf. talk by
Vincenzo
Carmelita

 $d(z) = rac{z}{H_0} + \mathcal{O}ig(z^2ig)$

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys
 large scale structure (LSS)

$$\sigma_8^2 \equiv \langle \delta_R^2(oldsymbol{x})
angle \,, \;\; R=8 \; {
m Mpc}/h$$

- Indirect/distant
 - CMB

d = c

•

Cosmic **licroway** Background Radiation SDSS-IV Data Her Time Since the Big Bang (Billions of Years)

 $d(z) = rac{z}{H_0} + \mathcal{O}ig(z^2ig)$

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys
 large scale structure (LSS)

$$\sigma_8^2 \equiv \langle \delta_R^2({m x})
angle \;, \;\; R=8 \; {
m Mpc}/h$$

d = c

Indirect/distant

Fundamental observations

Direct/local

Distance redshift relation

$$d = c \int \frac{\mathrm{d}z}{H} \qquad \Longrightarrow \qquad d(z) = \frac{z}{H_0} + \mathcal{O}(z)$$

Galaxy surveys
 large scale structure (LSS)

ge scale structure (LSS)

$\sigma_8^2 \equiv \langle \delta_R^2({m x}) angle \;, \;\; R=8 \; { m Mpc}/h$.

c

Indirect/distant

CMB distance priors

angular scale

shift parameter

 $R_* = d(z_*) \sqrt{\Omega_m H_0^2}$

[Planck]

[Planck]

Fundamental observations

Direct/local

Distance redshift relation

$$d = c \int \frac{\mathrm{d}z}{H} \qquad \Longrightarrow \qquad d(z) = \frac{z}{H_0} + \mathcal{O}(z)$$

Galaxy surveys
 large scale structure (LSS)

e scale structure (LSS)

$\sigma_8^2 \equiv \langle \delta_R^2({m x}) angle \ , \ R=8 \ { m Mpc}/h$

c

Indirect/distant

CMB distance priors

angular scale

shift parameter

 $d(z) = rac{z}{H_0} + \mathcal{O}(z^2)$

Fundamental observations

Direct/local

Distance redshift relation

d = c

 $\sigma_8^2 \equiv \langle \delta_R^2({m x})
angle \;,\;\; R=8\;{
m Mpc}/h$

- Galaxy surveys
 large scale structure (LSS)
- Indirect/distant

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys large scale structure (LSS)
- Indirect/distant
 - CMB + ΛCDM

measured

H_o

 σ_8 and

inferred

measured

and

and

inferred

 σ_{8}

 σ_8

H₀

V

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys
 large scale structure (LSS)
- Indirect/distant
 - CMB + ΛCDM

[Abdalla et al. 2203.06142]

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys large scale structure (LSS)
- Indirect/distant
 - CMB + ACDM

 σ_8 TENSION

 σ_{8}

Λ

measured

and

and

inferred

H₀

V

• CMB Planck TT, TE, EE+lowE CMB Planck TT, TE, EE+lowE+lensing · CMB ACT+WMAP

· RSD

· RSD

0.2

Aghanim et al. (2020d) · Aghanim et al. (2020d) · Aiola et al. (2020)

0.834 0.832

Early Universe

[Abdalla et al. 2203.06142]

e

 $H_0 \equiv \overline{100 \ h \ \mathrm{km \, s^{-1}}} \, \mathrm{Mpc^{-1}}$

[H. Villarrubia-Rojo]

angular scale

 $\theta_* = \frac{r_s(z_*)}{d(z_*)}$

sound horizon

distance to us

$$d(z_*) = \int_0^{z_*} \frac{\mathrm{d}z}{H}$$

[H. Villarrubia-Rojo]

There exist many proposed modifications of ACDM

Example: covariant dark enegy models (Horndeski, GenProca)

- Aleviate H₀ tension
- At the cost of worsening o₈ tension!
 perturbation level: expensive Boltzman simulations

[arXiv:1603.05806] [arXiv:1901.07183] [arXiv:2002.06782] [arXiv:2010.00513]

There exist many proposed modifications of ACDM

Example: covariant dark enegy models (Horndeski, GenProca)

- Aleviate H₀ tension
- At the cost of worsening o₈ tension!
 perturbation level: expensive Boltzman simulations

[arXiv:1603.05806] [arXiv:1901.07183] [arXiv:2002.06782] [arXiv:2010.00513]

Goal: Formulate analytic, model independent conditions to solve both tensions simultaneously

Late time ΛCDM :

Assume:

2 parameters H_0 and ω_m

generic Λ CDM modification produces small deviations in H(z) at late times

 $H(H_0,\omega_m) = \overline{H_{\Lambda ext{CDM}}(H_0,\omega_m) + \delta H(z)}$

model independent

$\delta H(z)$ an arbitrary function, no parametrization!

Late time ΛCDM :

Assume:

2 parameters H_0 and ω_m

generic Λ CDM modification produces small deviations in H(z) at late times

$$H(H_0,\omega_m) = H_{\Lambda CDM}(H_0,\omega_m) + \frac{\delta H(z)}{\delta H(z)}$$

model independent

$\delta H(z)$ an arbitrary function, no parametrization!

Late time ΛCDM :

Assume:

On background

2 parameters H_0 and ω_m

generic Λ CDM modification produces small deviations in H(z) at late times

$$H(H_0,\omega_m) = H_{\scriptscriptstyle \Lambda ext{CDM}}(H_0,\omega_m) + \frac{\delta H(z)}{\delta H(z)}$$

model independent

 $\delta H(z)$ an arbitrary function, no parametrization!

$$\implies \frac{\Delta H(z)}{H(z)} = \frac{H_0^2}{H^2(z)} \frac{\delta H_0}{H_0} + \frac{\delta H(z)}{H(z)}$$

Late time ΛCDM :

Assume:

On background

Calculate total variation of any observable

2 parameters H_0 and ω_m

generic Λ CDM modification produces small deviations in H(z) at late times

$$H(H_0,\omega_m) = H_{\Lambda ext{CDM}}(H_0,\omega_m) + \frac{\delta H(z)}{\delta H(z)}$$

model independent

 $\delta H(z)$ an arbitrary function, no parametrization!

$$\Rightarrow \frac{\Delta H(z)}{H(z)} = \frac{H_0^2}{H^2(z)} \frac{\delta H_0}{H_0} + \frac{\delta H(z)}{H(z)}$$

$$\Rightarrow \frac{\Delta \mathcal{O}(z)}{\mathcal{O}(z)} = I_{\mathcal{O}}(z) \frac{\delta H_0}{H_0} + \int_0^\infty \frac{\mathrm{d}x_z}{1 + x_z} R_{\mathcal{O}}(x_z, z) \frac{\delta H(x_z)}{H(x_z)} \frac{\delta H(x$$

$$H_0 + \delta H_0$$

 $\omega_m + \delta \omega_m$

•

relate $\frac{\Delta \mathcal{O}(z)}{\mathcal{O}(z)} = I_{\mathcal{O}}(z) \frac{\delta H_0}{H_0} + \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} R_{\mathcal{O}}(x_z, z) \frac{\delta H(x_z)}{H(x_z)}$ • • •

angular scale

Choose a single observable and impose a vanishing variation

.

angular scale

Choose a single observable and impose a vanishing variation

$$\Rightarrow \frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1 + x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

Response functions

relate $\frac{\Delta \mathcal{O}(z)}{\mathcal{O}(z)} = I_{\mathcal{O}}(z) \frac{\delta H_0}{H_0} + \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} R_{\mathcal{O}}(x_z, z) \frac{\delta H(x_z)}{H(x_z)}$

• • •

. . . .

angular scale

Choose a single observable and impose a vanishing variation

$$\Delta \theta_* \stackrel{!}{=} 0$$

e

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

Response functions

$$\Rightarrow \frac{\Delta \mathcal{O}(z)}{\mathcal{O}(z)} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\mathcal{O}}(x_z, z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta \mathcal{O}(z)}{\mathcal{O}(z)} = I_{\mathcal{O}}(z) \frac{\delta H_0}{H_0} + \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} R_{\mathcal{O}}(x_z, z) \frac{\delta H(x_z)}{H(x_z)}$$

6

 $\frac{\delta H_0}{H_0} =$ $\frac{\mathrm{d}x_z}{1+x_z}\mathcal{R}_{H_0}(x_z)^{\frac{1}{2}}$ $\left(\frac{\delta H(x_z)}{H(x_z)}\right)$

 $\frac{\mathrm{d}x_z}{1+x_z}\mathcal{R}_{H_0}(x_z)^{\frac{1}{2}}$ $\left(\frac{\delta H(x_z)}{H(x_z)}\right)$ $\frac{\delta H_0}{H_0}$

> 0

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

· ·

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)} >$$

$$\frac{\Delta\sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\sigma_8} \frac{\delta H}{H}$$

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)} >$$

$$\frac{\Delta \sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\sigma_8} \frac{\delta H}{H} > 0$$

Ω

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta \sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\sigma_8} \frac{\delta H}{H} > 0$$

۲

 $\delta H(z)$ needs to change sign

Equation of state

$$\frac{p}{\rho} = \omega(z)$$

$$\frac{\delta H(z)}{H(z)} = \frac{H_0^2 \Omega_{\Lambda}}{2H^2(z)} \left\{ \exp\left(3\int_0^z \left(1+w(z)\right)\frac{dz}{1+z}\right) - 1\right\}$$

EXAMPLE

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

Equation of state

$$\frac{p}{\rho} = \omega(z) \quad , \quad \frac{\delta H(z)}{H(z)} = \frac{H_0^2 \Omega_{\Lambda}}{2H^2(z)} \left\{ \exp\left(3\int_0^z \left(1 + w(z)\right) \frac{dz}{1+z}\right) - 1 + \frac{\delta H(z)}{2H^2(z)} \right\}$$

 $\delta H(z) < 0 \Rightarrow \omega(z) < -1$

→ phantom dark energy ω<-1

ρ

e

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

Equation of state

 $\delta H(z) < 0 \Rightarrow \omega(z) < -1$

 $\frac{p}{-} = \omega(z)$

\rightarrow phantom dark energy ω <-1

•

۲

At the background level

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

Dark energy fluid model

Equation of state

 $\delta H(z) < 0 \Rightarrow \omega(z) < -1$

• phantom dark energy ω <-1

 $\frac{p}{-} = \omega(z)$

 $\Delta \sigma_8 =$ σ_8

 $^{\circ} \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\sigma_8} \frac{\delta H}{H}$ r^{∞}

EXAMPLE

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1 + x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

Dark energy fluid model

Equation of state

 $\delta H(z) < 0 \Rightarrow \omega(z) < -1$

 $\frac{p}{-} = \omega(z)$

• phantom dark energy ω <-1

need to cross the phantom divide! <

At the background level

۲

 $\delta H(z)$ needs to change sign

EXAMPLE

Solve H₀ tension:

phantom dark energy ω <-1

Solve both tensions: need to cross the phantom divide!

 $w = w_0 + w_a(1-a)$ 1.00.50.0 $w_0 = -1.05, w_a = -0.05$ $\frac{\delta H}{H}$ $w_0 = -1.05, w_a = -0.0111$ $^{+0.5}$ $w_0 = -1.05, w_a = 0.0278$ $w_0 = -1.05, w_a = 0.0667$ $w_0 = -1.05, w_a = 0.106$ $w_0 = -1.05, w_a = 0.144$ $w_0 = -1.05, w_a = 0.174$ -1.0 $w_0 = -1.05, w_a = 0.183$ $w_0 = -1.05, w_a = 0.222$ $w_0 = -1.05, w_a = 0.261$ $w_0 = -1.05, w_a = 0.3$ --- ACDM -1.5 10^{0} 10^{1} 10^{2} 1 + z

CLP parametrization

EXAMPLE

Solve H₀ tension:

phantom dark energy ω <-1

Solve both tensions: need to cross the phantom divide!

Numerical Benchmarks

	$100 imes \delta h/h$		$100 imes \Delta \sigma_8 / \sigma_8$	
w_a	class	Analytical	class	Analytical
-0.05	2.81	2.61	2.24	2.08
-0.01	2.35	2.22	1.86	1.75
0.03	1.89	1.80	1.47	1.39
0.07	1.42	1.37	1.07	1.03
0.11	0.946	0.93	0.66	0.64
0.14	0.465	0.46	0.24	0.23
0.174	0.095	0.093	-0.089	-0.092
0.18	-0.022	-0.025	-0.19	-0.20
0.22	-0.52	-0.53	-0.64	-0.65
0.26	-1.02	-1.07	-1.09	-1.13
0.3	-1.54	-1.62	-1.56	-1.64

EXAMPLE

Solve H₀ tension:

phantom dark energy ω <-1

Solve both tensions: need to cross the phantom divide!

Numerical Benchmarks

	$100 imes \delta h/h$		$100 imes \Delta \sigma_8 / \sigma_8$	
w_a	class	Analytical	class	Analytical
-0.05	2.81	2.61	2.24	2.08
-0.01	2.35	2.22	1.86	1.75
0.03	1.89	1.80	1.47	1.39
0.07	1.42	1.37	1.07	1.03
0.11	0.946	0.93	0.66	0.64
0.14	0.465	0.46	0.24	0.23
0.174	0.095	0.093	-0.089	-0.092
0.18	-0.022	-0.025	-0.19	-0.20
0.22	-0.52	-0.53	-0.64	-0.65
0.26	-1.02	-1.07	-1.09	-1.13
0.3	-1.54	-1.62	-1.56	-1.64

IMPLICATIONS FOR BEYOND GR THEORIES

Naively, ω<-1

 \Rightarrow

Kinetic instability / Ostrogradski ghost

(in connection to violation of energy conditions)

[arXiv:astro-ph/0301273] [arXiv:1708.06981]

IMPLICATIONS FOR BEYOND GR THEORIES

Naively, ω<-1

Kinetic instability / Ostrogradski ghost

(in connection to violation of energy conditions)

Higher derivative interactions allow for consistent phantom equations of state

(Motivation for beyond GR theories)

e.g. Hornde

Horndeski theories generalized Procca [arXiv:1901.07183] [arXiv:1603.05806]

[arXiv:astro-ph/0301273]

[arXiv:1708.06981]

IMPLICATIONS FOR BEYOND GR THEORIES

Naively, ω<-1

Kinetic instability / Ostrogradski ghost

(in connection to violation of energy conditions)

[arXiv:astro-ph/0301273] [arXiv:1708.06981]

Higher derivative interactions allow for consistent phantom equations of state

(Motivation for beyond GR theories)

e.g.

Horndeski theories

generalized Procca

Crossing ω =-1 : difficult without running into divergences

[arXiv:1901.07183] [arXiv:1603.05806]

[arXiv:1008.1684]

BEYOND BACKGROUND MODIFICATIONS

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta\sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H} + \sum_i \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{Q}_i \frac{\delta Q_i}{Q_i}$$

BEYOND BACKGROUND MODIFICATIONS

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta\sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H} + \sum_i \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{Q}_i \frac{\delta Q_i}{Q_i}$$

If solve the H_0 -tension at the background level but not σ_8

 $\delta H(z) < 0$

BEYOND BACKGROUND MODIFICATIONS

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta\sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H} + \sum_i \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{Q}_i \frac{\delta Q_i}{Q_i}$$

If solve the H_0 -tension at the background level but not σ_8

New effects need to reduce σ_8 even more!

 $\delta H(z) < 0$

EXAMPLE

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta \sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\sigma_8} \frac{\delta H}{H}$$

Include perturbations $\delta_m \propto D(a)$

Change in Newtons const. $G_{
m eff}=G+\delta G$

EXAMPLE

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta \sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{\sigma_8} \frac{\delta H}{H} + \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \mathcal{G}_{\sigma_8} \frac{\delta G}{G}$$
Include perturbations $\delta_m \propto D(a)$
Change in Newtons const. $G_{\text{eff}} = G + \delta G$

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

 $\delta_m \propto D(a)$

Change in Newtons const. $G_{
m eff} = G + \delta G$

$$\frac{\Delta\sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\sigma_8} \frac{\delta H}{H} + \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{G}_{\sigma_8} \frac{\delta G}{G}$$

If $\delta H(z) < 0$

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

$$\frac{\Delta\sigma_8}{\sigma_8} = \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{R}_{\sigma_8} \frac{\delta H}{H} + \int_0^\infty \frac{\mathrm{d}x_z}{1+x_z} \,\mathcal{G}_{\sigma_8} \frac{\delta G}{G}$$

$$\frac{\delta G}{G} < \alpha(z) \frac{\delta H}{H} < 0$$

But usually clustering of DE results in $G_{eff} > G$!

but usually clustering of DE results in G_{eff} > 0 ?

$$\frac{\delta H_0}{H_0} = \int \frac{\mathrm{d}x_z}{1+x_z} \mathcal{R}_{H_0}(x_z) \frac{\delta H(x_z)}{H(x_z)}$$

But usually clustering of DE results in $G_{eff} > G$!

Conclusion: Solving both tensions is not easy

🔶 🛛 Hin

Hints towards **ACDM** extension

SUMMARY AND OUTLOOK

Analytic, model independent method, based on single observational constraint

i) Solving the H_0 tension $\Rightarrow \delta H(z) < 0$ for some $z \Rightarrow w(z) < -1$ for some z.

ii) If the perturbations are not modified $(G_{\text{eff}} = G)$ then: Solving the H_0 and σ_8 tensions $\Rightarrow \delta H(z)$ changes sign $\Rightarrow w(z)$ crosses the phantom divide.

iii) If $G_{\text{eff}} = G + \delta G(z)$ and $\delta H(z)$ does not change sign then:

Solving the H_0 and σ_8 tensions $\Rightarrow \frac{\delta G(z)}{G} < \alpha(z) \frac{\delta H(z)}{H(z)} < 0$ for some z. where $\delta H(z) < 0$ and $\alpha(z) > 0$.

ign then:

$$\delta H(z) = 0$$

Combine with other constraints eg. GW speed , BAO ...

Example: luminal Horndeski/GenProca theoreis are possibly ruled out

- Use method for other observables: late ISW
- Early time solutions

THANK YOU FOR THE ATTENTION

Basis:

General relativity

Background homogeneity and isotropy Particle physics

$$d = \int_0^d \mathrm{d}r = c \int_{t_e}^{t_0} \frac{\mathrm{d}t}{a(t)} = c \int_0^z \frac{\mathrm{d}z}{H(z)}$$

۲

Basis:

General relativity Background homogeneity and isotropy Particle physics

 $\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)\mathrm{d}\boldsymbol{x}^2$

H =

Ingredients: Cosmological constant A Cold dark matter (CDM) Inflation

Expansion rate today $H_0 \equiv 100 \ h \ {\rm km \, s^{-1} \, Mpc^{-1}}$

Parameters: $\left\{ H_0, \Omega_m, \Omega_b, au_{
m reio}, A_s, n_s \right\}$

only 6 free parameters

 $H^2_{\Lambda \text{CDM}} = H^2_0 \left(\Omega_m (1+z)^3 + \Omega_\Lambda \right)$ $\Omega_m + \Omega_{\Lambda} = 1$ Late time: 2 parameters

Fundamental observations

Direct/local

- Distance redshift relation
- Galaxy surveys / tracers
 large scale structure (LSS)

$$\overline{\sigma_8^2} \equiv \langle \delta_R^2({m x})
angle \;, \;\; R=8 \; {
m Mpc}/h$$

measure

 $f\sigma_8$

Redshift space distortions (RSD) and RS Galaxy Clustering (GC)

d = c

 $d(z) = rac{z}{H_0} + \mathcal{O}ig(z^2ig)$

Weak lensing (WL)

[S. Colombi (IAP), CFHT Team]

measure

 $S_8 \equiv \sigma_8 \sqrt{\frac{\Omega_m}{0.3}}$

cosmic shear galaxy shape distortion correlations

 $d(z) = rac{z}{H_0} + \mathcal{O}(z^2)$

Fundamental observations

Direct/local

- Distance redshift relation d = c
- Galaxy surveys / tracers
 large scale structure (LSS)

 $\sigma_8^2 \equiv \langle \delta_R^2({m x})
angle \;, \;\; R=8 \; {
m Mpc}/h$

Redshift space distortions (RSD) and RS Galaxy Clustering (GC)

[SDSS Collaboration]

[KiDS-1000 arXiv:2007.15632]

 $S_8 \equiv \sigma_8 \sqrt{\frac{\Omega_m}{0.3}}$

cosmic shear galaxy shape distortion correlations

Fundamental observations

Direct/local

Distance redshift relation

large scale structure (LSS)

 $d = c \int \frac{\mathrm{d}z}{H} \implies d(z) = \frac{z}{H_0} + \mathcal{O}(z^2)$ $\sigma_8^2 \equiv \langle \delta_R^2(\boldsymbol{x}) \rangle , \quad R = 8 \text{ Mpc}/h$

Indirect/distant

Galaxy surveys

CMB distance priors

angular scale

shift parameter

[Planck]

METHOD

angular scale

Choose a single observable and impose a vanishing variation

$$\Delta \theta_* \stackrel{!}{=} 0$$

Sidenote

shift parameter

Controls the overall amplitude and relative heights of the peaks

METHOD

 $\Delta R_* \stackrel{!}{=} 0$

angular scale

Choose a single observable and impose a vanishing variation

Sidenote

shift parameter

 $R_* = d(z_*) \sqrt{\Omega_m H_0^2}$

Controls the overall amplitude and relative heights of the peaks

Effects similar to varying ω_{m}

What about truly measured quantities?

Supernova observations

Measure the absolute magnitude *M* (used to calibrate the observed apparent magnitude)

at very low redshifts could increase H_0 while decreasing M !

What about truly measured quantities?

۲

$\delta H(z)$ needs to change sign

•

What about truly measured quantities?

at very low redshifts could increase σ_{s} while decreasing f σ_{s} and S_{s}

This could be interesting if in the future a discrepancy between σ_8 and measured quantities at very late times arises

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - c_T^2 (\partial_z h_{\lambda})^2 \right) \propto \sum_{\lambda} h_{\lambda} g_{\mu\nu} \partial^{\mu} \partial^{\nu} h_{\lambda} \quad \Rightarrow \quad g_{\mu\nu} k^{\mu} k^{\nu} = 0$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - c_T^2 (\partial_z h_{\lambda})^2 \right) \propto \sum_{\lambda} h_{\lambda} g_{\mu\nu} \partial^{\mu} \partial^{\nu} h_{\lambda} \quad \Rightarrow \quad g_{\mu\nu} k^{\mu} k^{\nu} = 0$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - c_T^2 (\partial_z h_{\lambda})^2 \right) \propto \sum_{\lambda} h_{\lambda} g_{\mu\nu} \partial^{\mu} \partial^{\nu} h_{\lambda} \quad \Rightarrow \quad g_{\mu\nu} k^{\mu} k^{\nu} = 0$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - c_T^2 (\partial_z h_{\lambda})^2 \right) = \sum_{\lambda} h_{\lambda} g_{\mu\nu} \partial^{\mu} \partial^{\nu} h_{\lambda} \quad \Rightarrow \quad g_{\mu\nu} k^{\mu} k^{\nu} = 0$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 - h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{\lambda}^2 \right)$$

$$F(t) = \sum_{\lambda} g_T \left(h_{\lambda}^2 - h_{\lambda}^2 + h_{$$
EXAMPLE: SCALAR-TENSOR THEORIES

Luminal Horndeski theory

$$\begin{aligned} \mathcal{L}_2 &= G_2(\pi, X) \\ \mathcal{L}_3 &= -G_3(\pi, X)[\Pi] \\ \mathcal{L}_4 &= G_4(\pi, X)R + G_{4, X} \left([\Pi]^2 - [\Pi^2] \right) \\ \mathcal{L}_5 &= G_5(\pi, X)G_{\mu\nu}\Pi^{\mu\nu} - \frac{1}{6}G_{5, X} \left([\Pi]^3 - 3[\Pi][\Pi^2] + 2[\Pi^3] \right) \end{aligned}$$

$$G_{4,X} = 0$$
 and $G_5 = \text{const.}$

EXAMPLE: SCALAR-TENSOR THEORIES

Luminal Horndeski theory

$$\mathcal{L}_2 = G_2(\pi, X)$$
$$\mathcal{L}_3 = -G_3(\pi, X)[\Pi]$$
$$\mathcal{L}_4 = G_4(\pi)R$$

Implications

- Radiatively stable even in presence of Galileon breaking interaction
- Luminal, but scalar still mediates a propagating scalar GW breathing mode h_b (monopole and dipole radiation)
- In conflict with cosmological observations, e.g. $G_{eff} > G_N$

 H_0 and σ_8 tensions

