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Dark energy and early dark energy - what could they be?

Ed Copeland -- Nottingham University
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1. Approaches to Dark Energy and Modified Gravity. 

2. Testing screening mechanisms in the laboratory. 

3. Screening fields and the Radial Acceleration Relation 

4. Searching for fifth forces in colliders.  

5. Hubble tension and approaches to Early Dark Energy  

6. Dark Energy and the String Swampland 

7. Recent large z results if quasars can be standard candles 
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The Big Bang – (1sec ! today) 
  

The cosmological principle -- isotropy and homogeneity on large scales

• The expansion of the Universe 
v=H0d  

H0=73.04±1.04 km s-1  Mpc-1 

(Riess et al, 2022)  

H0=67.4±0.5 km s-1  Mpc-1 

(Planck 2018) 

Is there a local v global tension ? 

H =
ȧ

a

M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia.

sample �coh
low-z 0.12
SDSS-II 0.11
SNLS 0.08
HST 0.11

Table 9. Values of �coh used in the cosmological fits. Those val-
ues correspond to the weighted mean per survey of the values
shown in Figure 7, except for HST sample for which we use the
average value of all samples. They do not depend on a specific
choice of cosmological model (see the discussion in §5.5).
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Fig. 7. Values of �coh determined for seven subsamples of the
Hubble residuals: low-z z < 0.03 and z > 0.03 (blue), SDSS
z < 0.2 and z > 0.2 (green), SNLS z < 0.5 and z > 0.5 (orange),
and HST (red).

may a↵ect our results including survey-dependent errors in es-
timating the measurement uncertainty, survey dependent errors
in calibration, and a redshift dependent tension in the SALT2
model which might arise because di↵erent redshifts sample dif-
ferent wavelength ranges of the model. In addition, the fit value
of �coh in the first redshift bin depends on the assumed value
of the peculiar velocity dispersion (here 150km · s�1) which is
somewhat uncertain.

We follow the approach of C11 which is to use one value of
�coh per survey. We consider the weighted mean per survey of
the values shown in Figure 7. Those values are listed in Table 9
and are consistent with previous analysis based on the SALT2
method (Conley et al. 2011; Campbell et al. 2013).

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.
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Fig. 8. Top: Hubble diagram of the combined sample. The dis-
tance modulus redshift relation of the best-fit ⇤CDM cosmol-
ogy for a fixed H0 = 70 km s�1 Mpc�1 is shown as the black
line. Bottom: Residuals from the best-fit ⇤CDM cosmology as
a function of redshift. The weighted average of the residuals in
logarithmic redshift bins of width �z/z ⇠ 0.24 are shown as
black dots.

6.1. ⇤CDM fit of the Hubble diagram

Using the distance estimator given in Eq. (4), we fit a ⇤CDM
cosmology to supernovae measurements by minimizing the fol-
lowing function:

�2 = (µ̂ � µ⇤CDM(z;⌦m))†C�1(µ̂ � µ⇤CDM(z;⌦m)) (15)

with C the covariance matrix of µ̂ described in Sect. 5.5 and
µ⇤CDM(z;⌦m) = 5 log10(dL(z;⌦m)/10pc) computed for a fixed
fiducial value of H0 = 70 km s�1 Mpc�1,13 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the four nuisance param-
eters ↵, �, M1

B and �M from Eq. (4). The Hubble diagram for
the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find
a best fit value for ⌦m of 0.295 ± 0.034. The fit parameters are
given in the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant

13 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1

B).
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Betoule  et al 2014 Redshift 1 + z =
a0
a
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Figure 14. Probability distributions for H0 for calibrations based on Cepheids [135], the TRGB [25]
SBF from [82], compared to recent published values from the literature. The Planck Collaboration
value from the CMB [11] shown in grey.

Summary

The advancement in measuring the distances to galaxies over the past twenty-five years has
been nothing short of remarkable. Just two decades ago, achieving accuracies within a few
percent for the extragalactic distance scale was virtually unthinkable. This progress can be
attributed to better detectors, increased wavelength coverage, innovative new, independent
methods for measuring distances, and access to space, all of which have made it possible to
address systematic e↵ects including reddening/extinction from dust, metallicity, and crowd-
ing.

The launch of JWST has opened a new chapter in the measurement of extragalactic
distances and H0. The superb resolution and unequalled sensitivity at near-infrared wave-
lengths is already demonstrated in the first data from the nearby galaxies, NGC 7250, NGC
3972 and NGC 4536, at distances between ⇠15-20 Mpc. These early data clearly demon-
strate the promise of JWST for improving the measurement of extragalactic distances and the
local, directly measured value of H0. Our program has been optimized to observe Cepheids
in the spiral arms of the inner disks of galaxies, JAGB stars in the extended disks, and
TRGB stars in the outer halos of galaxies. All ten of the program galaxies are SN Ia hosts;
an eleventh galaxy, NGC 4258, will provide an absolute distance calibration through the
geometric measurement of its distance based on H2O megamasers.

For the first time, we have JWST data for Cepheids where stars located within one PSF
radius, that were discovered on HST frames, can be directly identified. Limiting the sample
of Cepheids to exclude the variables with nearby neighbors, results in a distance modulus
that is +0.45 mag farther away (in the sense that its contribution would result in a lower
value of H0). Future data will reveal whether this is indicative of a systematic e↵ect to be
found in the larger sample.

While it has become a common refrain in the literature that systematic e↵ects can no

– 26 –

JWST may have something to say on the Hubble tension - higher 
resolution should allow it to address crowding of cepheids 

W.L Freedman and B.F. Madore - arXiv:2309.05618

`` the current outstanding question … revolves around the uncertainty in the uncertainty..’’ local 
measurements need to reach 1% before true comparison can be made with cmb 
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Bounds on H(z) -- Planck 2018 - (+BAO+lensing+lowE)

(Expansion rate) -- H0=67.66 ± 0.42 km/s/Mpc 

(radiation) -- Ωr = (8.5 ± 0.3) x 10-5 - (WMAP) 

(baryons) -- Ωb h2= 0.02242 ± 0.00014        

(dark matter) --  Ωch2= 0.11933 ± 0.00091 —-(matter) - Ωm = 0.3111 ± 0.0056 

(curvature) -- Ωk =0.0007 ± 0.0019 

(dark energy) -- Ωde = 0.6889 ± 0.0056 -- Implying univ accelerating  today 

(de eqn of state) -- 1+w = 0.028 ± 0.032 -- looks like a cosm const. 

If allow variation of form : w(z) = w0+ w’ z/(1+z) then 
w0=-0.961 ±0.077 and w’=-0.28 ± 0.31 (68% CL) — (WMAP) 

Important because distance measurements often rely on assumptions made about the 
background cosmology.

H2(z) = H2
0

�
�r(1 + z)4 + �m(1 + z)3 + �k(1 + z)2 + �de exp

�
3

⇤ z

0

1 + w(z�)
1 + z� dz�

⇥⇥
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The acceleration has not been forever -- pinning down the 
turnover will provide a very useful piece of information.

Help address cosmic coincidence problem ! A region hopefully 
EUCLID will be able to probe in a few months. Will it see evidence for 

either w≄-1 or w(z) - that would be huge.

Huterer 2010
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Different approaches to Dark 
Energy include amongst many:

A true cosmological constant -- but why this value - CCP ? 

Time dependent solutions arising out of evolving scalar fields -- 
Quintessence/K-essence. 

Modifications of Einstein gravity leading to acceleration today. 

Anthropic arguments. 

Perhaps GR but Universe is inhomogeneous. 

Hiding the cosmological constant -- its there all the time but just 
doesn’t gravitate and something else is driving the acceleration. 

Yet to be proposed ...
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One approach - accept there may be a large Λ —Self tuning

In GR the vacuum energy gravitates, and the theoretical estimate suggests that it 
gravitates too much.  

Basic idea is to use self tuning to prevent the vacuum energy gravitating at all.  

The cosmological constant is there all the time but is being dealt with by the 
evolving scalar field.

with Charmousis, Padilla and Saffin: PRL 108 (2012) 051101; PRD 85 (2012) 104040 

Most general scalar-tensor theory with second order field equations:
[G.W. Horndeski, Int. Jour. Theor. Phys. 10 (1974) 363-384]

The action which leads to required self tuning solutions :

In other words it can be seen to reside in terms of the four arbitrary potential 
functions of ϕ coupled to the curvature terms.  

Covers most scalar field related modified gravity models studied to date.
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q = �p(p� 1)

p2
= �(1 + h)

Thursday, 28 February 2013
Appleby et al JCAP 1210 (2012) 060; Amendola et al PRD 87 (2013) 2, 023501; Martin-Moruno et al PRD 91 (2015) 8, 

084029; Babichev et al arXiv:1507.05942 [gr-qc] ; Emond et al JCAP 05 (2019) 038

See also:  
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Particle physics inspired models of dark energy ? 

Pseudo-Goldstone Bosons -- approx sym φ --> φ + const.  

Leads to naturally small masses, naturally small couplings

Barbieri et al

V (⇥) = �4(1 + cos(⇥/Fa))
Axions could be useful for strong CP problem, dark matter and dark 

energy — ex. Quintessential Axion.

See Yoga model of 
Burgess et al 2021 for 

new approach at solving 
the CCP via relaxation 

mechanism and 
obtaining dynamical DE
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Dynamical Dark Energy 

Slowly rolling scalar fields Quintessence

1. PE ! KE 

2. KE dom scalar field 
energy den. 

3. Const field. 

4. Attractor solution: 
almost const ratio KE/
PE. 

5. PE dom.

Attractors make initial conditions less important 
Nunes

Wetterich 1987, 
Caldwell et al 1998 
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Scaling for wide range of i.c.

Fine tuning: 

Mass:
Generic issue Fifth force - require 

screening mechanism!

Barreiro, EJC and Nunes 2000
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The problem of coupling DE and DM directly with scalars

Generate loop corrections to the DE mass.

Consider Yukawa type coupling between 
DE scalar and DM fermion g� ̄ 

Now since it is DE: m� ' H ⇠ 10�33
eV

Very light so long range 
attractive 5th force: Pot : �(r) ⇠ g2/r

Must be less than grav attraction of 
DM particles by say factor 10

g < m /(10mpl)

Loop correction to DE mass from DM � �
 

 

�m2
� ' g2m2

 < m4
 /(10mpl)

2

Require: �m
2
� < H

2
0 implying : m < 10�3eV

But then the required light DM isn’t cold - or go for an axion with a 
protected mass or a different coupling between DM and DE
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Quintessence tends to lead to existence of Yukawa Fifth Force - very 
tightly constrained.

Adelberger 2009.

F (r) = G
m1m2

r2

h
1 + ↵

⇣
1 +

r

�

⌘
e�r/�

i
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1. Chameleon fields [Khoury and Weltman (2003) …]

Non-minimal coupling of scalar to matter in order to avoid fifth force type 
constraints on Quintessence models: the effective mass of the field depends 
on the local matter density, so it is massive in high density regions and light 

(m~H) in low density regions (cosmological scales). 

2. K-essence [Armendariz-Picon et al …]

Scalar fields with non-canonical kinetic terms. Includes models with 
derivative self-couplings which become important in vicinity of massive 

sources.  The strong coupling boosts the kinetic terms so after canonical 
normalisation the coupling of fluctuations to matter is weakened -- 

screening via Vainshtein mechanism

Similar fine tuning to Quintessence -- vital in brane-world modifications of 
gravity, massive gravity, degravitation models, DBI model, Galileon's, ....

3. Symmetron fields [Hinterbichler and Khoury 2010 ...]

vev of scalar field depends on local mass density: vev large in low density 
regions and small in high density regions. Also coupling of scalar to matter is 

prop to vev, so couples with grav strength in low density regions but decoupled 
and screened in high density regions.     

Screening mechanisms - a route to hide the fifth forces



�i = 1 for ⇢iR
2
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Dark Energy Direct Detection Experiment [Burrage, EC, Hinds 2015,Hamilton et al 2015] 

We normally associate DE with cosmological scales but here we use the lab ! 

Atom Interferometry - testing Chameleons Idea: Individual atoms in a high vacuum 
chamber are too small to screen the chameleon field and so are very sensitive to it - can 
detect it with high sensitivity. Can use atom interferometry to measure the chameleon 

force - or more likely constrain the parameters !

r2� = �⇤2

�2
+

⇢

M

Sph source A and test object B 
near middle of chamber 

experience force between them - 
usually ƛ<<1 in cosmology but 

for atom ƛ=1 - reduced 
suppression

4

-6 -4 -2 0 2 4
-10

-8

-6

-4

-2

0

2

log M
GeV

lo
g
λ μ = 10-2 meV

μ = 10-0.5 meV

μ = 10-1 meV

Jaffe 2017
10-1.5 meV < μ < 10-1 meV

Torsion
balance

μ = 10-1 meV

μ = 10-1 meV

-15 -10 -5 0
-2

-1

0

1

2

log M
MPl

lo
g

Λ
m
eV

Torsion
balance

H
yd
ro
ge
n

Jaffe 2017

This work

(a) Chameleon (b) Symmetron

FIG. 4. Constraints on chameleon and symmetron parameters. Shaded regions are excluded. The black line on (a) marks
the dark energy scale ⇤ =

p
3MPlH0 ⇠ meV, where H0 is the Hubble constant [28]. For the symmetron (b), only a range of

approximately 1.5 orders of magnitude in µ is probed, as is typical of laboratory tests. Current bounds may also be found in
[29–33].

We solve Eq. (7), where ⇢m includes the source mass,
vacuum chamber gas, and walls. A general solution is un-
known, however, it may be solved exactly for an infinite
plate. It may also be solved numerically. We adopt both
approaches. The distance from the atoms to the surface
of the sphere is less than half the radius of the sphere, so
we approximate the sphere as an infinite plate [34, 35].
The plate is assumed to be su�ciently dense that � ⇡ 0
at the surface. We include an O(1) geometrical fitting
factor ⇠, which is determined numerically.

The chameleon field is approximated as [34, 36, 37]

�cham = ⇠cham(9⇤
5
/2)1/3x2/3

, (11)

where x = 0.775 cm is the distance from the atoms
to the nearest surface of the sphere. The fitting fac-
tor ⇠cham is determined by solving Eq. (7) numerically
on a 3-dimensional grid [7, 8]. We assume that � = 0
at the surfaces of the vacuum chamber and sphere, and
that the gas density is negligible. When these approx-
imations are not appropriate (for chameleon parameter
M . 10�10

MPl and M & 10�0.5
MPl with MPl being

the reduced Planck mass), we use an analysis identical
to that of [5, 6].

Comparing our numerical results with Eq. (11), we find
⇠cham = 1.11 across ten orders of magnitude of ⇤, ranging
from ⇤ = 10�5 to 10+5 eV. The insensitivity of ⇠cham to ⇤
is not a coincidence, as the chameleon equation of motion
in vacuum admits the scaling symmetry

� ! a� , ⇤ ! a
3/5⇤ . (12)

Equation (8) may now be used to compute the chameleon
force on a rubidium-87 nucleus. The constraints are plot-
ted in Fig. 4(a).

The symmetron has a potential and coupling

V (�) = �1

2
µ
2
�
2 +

�

4
�
4
, A(�) =

�
2

2M2
, (13)

and the screening factor for a spherical object is [3]

�a,symm ⇡ min

 
M

2

⇢objR
2
obj

, 1

!
. (14)

When the ambient matter density ⇢m is small, the field
goes to the vacuum expectation value v ⇡ µ/

p
� at the

minimum of its e↵ective potential Ve↵ = V + A⇢. If
the density is large, ⇢m > µ

2
M

2, the minimum of the
e↵ective potential is � = 0. The scalar force Eq. (8)
is proportional to the local field value, so large ambient
matter densities e↵ectively shut o↵ the scalar force.
The experiment tests the window 10�2 meV < µ .

10�1 meV. The upper bound is due to the force becom-
ing short-ranged, while at the lower bound it is so long-
ranged that � = 0 everywhere inside the vacuum chamber
[35]. The approximate solution to the symmetron field is
a product of a fitting factor ⇠symm and the 1D solution
[35, 38, 39]

�symm = ⇠symm(µ/
p
�) tanh(µx/

p
2) . (15)

Like the chameleon, the symmetron equation of motion
in vacuum admits the scaling symmetry

� ! a� , � ! 1

a2
� , (16)

which guarantees that ⇠symm is independent of �. A
similar argument does not apply for µ. We have nu-
merically solved the equation of motion for 10�2 meV
< µ < 300 meV, and found that ⇠symm is always be-
tween 1 and 1.5. We take the conservative approach and
set ⇠symm = 1. Our constraints, illustrated in Fig. 4(b),
cover a slightly wider range of µ than those of [8], al-
though the excluded region is similar. There exist strong

[Sabulsky et al 2019]
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Ed Hinds
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Use Atom Interferometry of atoms in free fall [Burrage, EC, Hinds 2015]

Ed Hinds

' = (k1 � k2).aT
2

Raman interferometry uses a 
pair of counter-proagating laser 
beams, pulsed on three times, 

to split the atomic wave 
function, imprint a phase 

difference, and recombine the 
wave function. 

The output signal of the 
interferometer is proportional 

to cos2 φ, with

k1,2 ��wavevectors of the 2 beams

T ��time interval between pulses

a��acceleration of the atom
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Combined chameleon  constraints [Burrage & Sakstein 2017] 

V (�) =
⇤5

�
V (�) =

⇤

4
�4
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Screening mechanisms - Symmetron [Hinterbichler & Khoury 2010]

1

2 Radiative Screening of Fifth Forces

3 Clare Burrage,* Edmund J. Copeland,† and Peter Millington‡

4 School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
5 (Received 25 April 2016; revised manuscript received 30 June 2016)

6 We describe a symmetron model in which the screening of fifth forces arises at the one-loop level
7 through the Coleman-Weinberg mechanism of spontaneous symmetry breaking. We show that such a
8 theory can avoid current constraints on the existence of fifth forces but still has the potential to give rise to
9 observable deviations from general relativity, which could be seen in cold atom experiments.

DOI:10

11 The mystery of dark energy has motivated much study of
12 scalar-tensor theories [1,2]. However, the associated scalar
13 fifth force has not been detected to date, and so either the
14 matter couplingmust be fine-tuned or this fifth forcemust be
15 screened in local environments. This has attracted significant
16 experimental interest, with proposals to test screening
17 models being made across cosmology [3], astrophysics
18 [4], and the fields of cold atoms [5–7] and high-precision
19 optics [8]. In existingmodels, this screening arises at the level
20 of the classical action, and one has to worry about radiative
21 stability [9]. In this Letter, we consider a screening mecha-
22 nism that emerges instead at the one-loop level by virtue of
23 radiative corrections, and we demonstrate that additional
24 loop corrections are subleading. Nevertheless, the behavior
25 of the scalar fifth force is analogous to the symmetronmodel,
26 first introduced in Refs. [10,11].
27 In the original symmetron model, the scalar fifth force is
28 screened from local tests of gravity as a result of tree-level
29 spontaneous symmetry breaking. This theory has the
30 classical potential

~VðφÞ≡ VðφÞ − Lm½g$ ¼ −
1

2
μ2φ2 þ 1

4
λφ4 − Lm½g$; ð1Þ

31 with the scalar field φ coupled universally to matter fields,
32 having Lagrangian density Lm, through the Jordan-frame
33 metric gμν. The latter is related to the Einstein-frame metric
34 ~gμν via the conformal transformation gμν ¼ A2ðφÞ~gμν,
35 where the coupling function AðφÞ is

AðφÞ ¼ 1þ φ2

2M2
þO

!
φ4

M4

"
; ð2Þ

36 and the scale M determines the matter coupling. Earlier
37 work studied a similar model but with different motivation
38 [12,13], and string-inspired models, with similar phenom-
39 enology, have also been proposed [14,15].
40 The classical equation of motion for the symmetron is

□φ ¼ dV
dφ

þ ~T
dA
dφ

; ð3Þ

41where ~T is the trace of the Einstein-frame energy-
42momentum tensor of the local matter fields. When this
43matter is static and nonrelativistic, we can treat it as a
44pressureless perfect fluid. In this case, the classical
45Einstein-frame potential of the symmetron becomes

~VðφÞ ¼ 1

2

!
ρ
M2

− μ2
"
φ2 þ 1

4
λφ4; ð4Þ

46where ρ is the local matter energy density. Whether the
47coefficient of the quadratic term is positive or not and, as a
48result, whether the Z2 symmetry (φ → −φ) is spontane-
49ously broken or not depends on the relative values of ρ=M2

50and μ2. Thus, taking μ2 > 0 and λ > 0, the symmetry is
51spontaneously broken in regions of low density and
52restored when the local density is high enough.
53On a test particle of unit mass, the symmetron field
54mediates a fifth force

~Fsym ¼ ~∇AðφÞ ¼ φ
M2

~∇φ: ð5Þ

55Thus, if the Universe is always sufficiently dense such that
56the Z2 symmetry is everywhere restored, we have φ ¼ 0,
57and the classical symmetron-mediated force vanishes.
58Instead, if the Universe is in the symmetry-broken phase
59today, dense concentrations of matter can be enough to
60restore the symmetry locally.
61Inside a spherically symmetric source of radius R and
62density ρin > μ2M2, the classical potential can be approxi-
63mated around the minimum at φ ¼ 0 as

~VðφÞjφ∼0 ≈
1

2
m2

inφ
2; ð6Þ

64where m2
in ¼ ρin=M2 − μ2 > 0. Outside the source, where

65the background density is ρout < μ2M2, the classical
66potential can be approximated around the true minima as

~VðφÞjφ∼'v ≈
1

2
m2

outðφ ∓ vÞ2; ð7Þ

1
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40 The classical equation of motion for the symmetron is

□φ ¼ dV
dφ

þ ~T
dA
dφ

; ð3Þ

41where ~T is the trace of the Einstein-frame energy-
42momentum tensor of the local matter fields. When this
43matter is static and nonrelativistic, we can treat it as a
44pressureless perfect fluid. In this case, the classical
45Einstein-frame potential of the symmetron becomes

~VðφÞ ¼ 1

2

!
ρ
M2

− μ2
"
φ2 þ 1

4
λφ4; ð4Þ

46where ρ is the local matter energy density. Whether the
47coefficient of the quadratic term is positive or not and, as a
48result, whether the Z2 symmetry (φ → −φ) is spontane-
49ously broken or not depends on the relative values of ρ=M2

50and μ2. Thus, taking μ2 > 0 and λ > 0, the symmetry is
51spontaneously broken in regions of low density and
52restored when the local density is high enough.
53On a test particle of unit mass, the symmetron field
54mediates a fifth force

~Fsym ¼ ~∇AðφÞ ¼ φ
M2

~∇φ: ð5Þ

55Thus, if the Universe is always sufficiently dense such that
56the Z2 symmetry is everywhere restored, we have φ ¼ 0,
57and the classical symmetron-mediated force vanishes.
58Instead, if the Universe is in the symmetry-broken phase
59today, dense concentrations of matter can be enough to
60restore the symmetry locally.
61Inside a spherically symmetric source of radius R and
62density ρin > μ2M2, the classical potential can be approxi-
63mated around the minimum at φ ¼ 0 as

~VðφÞjφ∼0 ≈
1

2
m2

inφ
2; ð6Þ

64where m2
in ¼ ρin=M2 − μ2 > 0. Outside the source, where

65the background density is ρout < μ2M2, the classical
66potential can be approximated around the true minima as

~VðφÞjφ∼'v ≈
1

2
m2

outðφ ∓ vÞ2; ð7Þ
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67 where

v≡mout=
ffiffiffi
λ

p
; ð8Þ

68 m2
out ¼ 2ðμ2 − ρout=M2Þ > 0, and we have neglected a

69 constant shift in the potential.
70 In Ref. [11], the symmetry-breaking scale is chosen close
71 to the cosmological density today, i.e., μ2M2 ∼H2

0M
2
Pl,

72 where H0 is the present-day Hubble scale, and the
73 symmetron force in vacuum is required to have approx-
74 imately gravitational strength, i.e., v=M2 ∼ 1=MPl. Here,
75 MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass, where G is
76 Newton’s gravitational constant. Assuming moutr ≪ 1, we
77 can find the general form of the symmetron field around the
78 source,

φðrÞ ¼ $v
minr

8
<

:

sinhminr
coshminR

; 0 < r < R
h
sinhminR
coshminR

þminðr − RÞ
i
; R < r:

ð9Þ

79 When the size of the source is much bigger than the
80 Compton wavelength of the symmetron field in its interior,
81 i.e., minR ≫ 1, symmetry is restored as r → 0, and we are
82 in the screened regime. For r ≫ R, the symmetron-
83 mediated force is then given by

Fsym

FN
¼ 6v2

ρinR2

"
MPl

M

#
2
"
1 −

R
r

#
≪ 1; ð10Þ

84 whereFN is the Newtonian gravitational force. On the other
85 hand, if minR ≪ 1, we do not reach the symmetry restored
86 phase as r → 0 and are instead in the unscreened regime,
87 and (for r ≫ R)

Fsym

FN
¼ 2v2

M2

"
MPl

M

#
2

≈ 2: ð11Þ

88 The symmetron force between test particles in vacuum can
89 have gravitational strength while still evading current
90 bounds from observations on solar-system scales so long
91 as the matter coupling M ≲ 10−4MPl [11,16].
92 The symmetron model described above exhibits sym-
93 metry breaking at tree level in regions of lowmatter density.
94 We now consider a symmetron model in which the
95 symmetry breaking arises radiatively in regions of low
96 matter density via the Coleman-Weinberg mechanism [18].
97 We begin with the following classical action [19]:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

$
1

2
FðϕÞR − Λþ Lþ Lm

%
; ð12Þ

98 where R is the Ricci scalar, Λ is the bare cosmological
99 constant, which we hereafter neglect, and we work in units

100 of the reduced Planck mass (i.e.,MPl ¼ 1) unless otherwise
101 stated. In order to remain in the regime of validity of the

102Coleman-Weinberg mechanism, the symmetry-breaking
103vacua for the Brans-Dicke-type scalar field ϕðxÞ≡ ϕx
104are induced through a coupling to a massless scalar field
105XðxÞ≡ Xx,

−L ¼ 1

2
ϕ;μϕ;μ þ 1

2
X;μX;μ þ λ

4
ϕ2X2 þ κ

4!
X4; ð13Þ

106where λ; κ > 0. We employ the signature convention
107ð−;þ;þ;þÞ. For technical simplicity in what follows,
108we have set to 0 a quartic self-interaction for the field ϕ.
109Finally, Lm is the matter Lagrangian, and we take a
110nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2

M2
; ð14Þ

111motivated by Eq. (2).
112We choose to work in the Jordan frame within an
113effective field theory (EFT) framework, neglecting the
114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
126(φ≡ hϕi), the canonically normalized Einstein-frame
127field ~φ is equal to the Jordan-frame field φ at leading
128order,

~φ ¼
Z

~φ

0
dφ

$
FðφÞ þ 3

2F
02ðφÞ

F2ðφÞ

%1
2

¼ φ

$
1þO

"
φ2

M2

#%
: ð15Þ

129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,
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112We choose to work in the Jordan frame within an
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114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
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118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
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123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
126(φ≡ hϕi), the canonically normalized Einstein-frame
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135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
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140gravitational sector is treated as a classical source; i.e., we
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93 metry breaking at tree level in regions of lowmatter density.
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111motivated by Eq. (2).
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114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
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127field ~φ is equal to the Jordan-frame field φ at leading
128order,

~φ ¼
Z

~φ

0
dφ

$
FðφÞ þ 3

2F
02ðφÞ

F2ðφÞ

%1
2

¼ φ

$
1þO

"
φ2

M2

#%
: ð15Þ

129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M
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138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,
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Symmetrons & rotation curves - screening in galaxies [Burrage, EC & Millington 2017]

Radial	Acceleration	Relation

153	galaxies,	

~	2700	data	points

Extension	of	the	

baryonic	Tully-Fisher	

relation	

25
McGaugh,	Lelli,	Schombert.	2016.	See	also	Keller	and	Wadsley 2016.

Radial acceleration relation 
from 153 galaxies (also 

known as mass discrepancy 
acceleration relation) [McGaugh et al 

PRL 2016]

gobs(bar)(r) =
V 2
obs(bar)(r)

r
=

GMobs(bar)(r)

r2

Empirical fit:

75 symmetron field acquires a nonzero vev φ ≈!v ¼ !μ=
ffiffiffi
λ

p
.

76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation

gobs ¼
gbar

1 − e−
ffiffiffiffiffiffiffiffiffiffi
gbar=g†

p ¼ gbar þ
gbar

e
ffiffiffiffiffiffiffiffiffiffi
gbar=g†

p
− 1

; ð4Þ

92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration

gsymðrÞ ¼
c2

2

d
dr

"
φðrÞ
M

#
2

; ð5Þ

96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that

gsymðrÞ ¼
gbarðrÞ

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbarðrÞ=g†

p
− 1

; ð6Þ

104 requiring
"
φ
M

#
2

¼
"
φ0

M

#
2

þ 2

c2

Z
r

0
dr0

gbarðr0Þ

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbarðr0Þ=g†

p
− 1

; ð7Þ

105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
107 mass density of the form

ΣðrÞ ¼ Σ0e−r=rs ; ð8Þ

108 the total mass within a radius r is given by

MbarðrÞ ¼ M0

Z
r

0

dr0

rs

r0

rs
e−r

0=rs

¼ M0

$
1 − e−r=rs

"
1þ r

rs

#%
; ð9Þ

109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
x
½1 − e−xð1þ xÞ'12;

f0 ¼
"
GM0

g†r2s

#1
2

; ð10Þ

111and using the fact that

gbar ¼
GMbarðrÞ

r2
; ð11Þ

112we see that the required field profile [Eq. (7)] becomes
"
φ
M

#
2

¼
"
φ0

M

#
2

þ 2
g†rs
c2

Z
x

0
dx0

f2ðx0Þ
efðx

0Þ − 1
; ð12Þ

113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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111and using the fact that

gbar ¼
GMbarðrÞ

r2
; ð11Þ

112we see that the required field profile [Eq. (7)] becomes
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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Explanations include: MOND [Milgrom 2016], MOG [Moffat 2016], Emergent Gravity [Verlinde 

2016], Dissipative DM [Keller & Waldsley 2016], Superfluid DM [Hodson et al 2016], some weird 
thing called ΛCDM [Ludlow et al PRL 2017] + us + others …
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Symmetron explanation [Burrage, EC and Millington 2017]
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75 symmetron field acquires a nonzero vev φ ≈!v ¼ !μ=
ffiffiffi
λ

p
.

76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation
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92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
x
½1 − e−xð1þ xÞ'12;

f0 ¼
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GM0

g†r2s
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111and using the fact that
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112we see that the required field profile [Eq. (7)] becomes
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation
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92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
107 mass density of the form

ΣðrÞ ¼ Σ0e−r=rs ; ð8Þ

108 the total mass within a radius r is given by
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
x
½1 − e−xð1þ xÞ'12;

f0 ¼
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GM0

g†r2s
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111and using the fact that
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112we see that the required field profile [Eq. (7)] becomes
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation
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92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
107 mass density of the form

ΣðrÞ ¼ Σ0e−r=rs ; ð8Þ
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
x
½1 − e−xð1þ xÞ'12;
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GM0
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111and using the fact that
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112we see that the required field profile [Eq. (7)] becomes
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
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95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.

2

BURRAGE, COPELAND, and MILLINGTON PHYSICAL REVIEW D XX, 000000 (XXXX)

2

Hence the 
required 

symmetron 
profile to explain 

observed accn 
without dark 

matter



23

202 hμ ≪ 1), the radial equation for the symmetron field
203 around an isolated galaxy takes the form

1

r
d
dr

!
r
d
dr

φ

"
− μ2ρðrÞφþ μ2φ − λφ3 ¼ 0; ð22Þ

204 subject to the boundary conditions φ0ð0Þ ¼ 0 and
205 φðrÞjr→∞ ¼ v. Under this approximate separability, gra-
206 dients perpendicular to the disk contribute an additional
207 uncertainty on μ2ρðrÞ.
208 We solve for the symmetron profile over a finite range
209 ½rmin; rmax& using Mathematica’s NDSOLVE routine. We
210 take rmin ∼ 0 and rmax ¼ 120 rs. Assuming an exponen-
211 tially decaying density profile, the asymptotic behaviors of
212 the solution are

φðrÞ ≈

8
<

:
AI0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ρð0Þ − μ2

q
rÞ; r ∼ 0;

v − BK0ð
ffiffiffiffiffiffiffi
2μ2

p
rÞ; r ≫ rs;

ð23Þ

213 for μρð0Þ > μ and rsμ ≪ 1, where I0 and K0 are the zeroth-
214 order modified Bessel functions of the first and second

215kinds. The boundary conditions at rmin and rmax can
216therefore be specified independent of the unknown con-
217stants A and B as follows:

φ0ðrminÞ
φðrminÞ

¼
I00ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ρð0Þ − μ2

q
rminÞ

I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ρð0Þ − μ2

q
rminÞ

; ð24aÞ

218
φ0ðrmaxÞ

φðrmaxÞ − v
¼ K0

0ð
ffiffiffiffiffiffiffi
2μ2

p
rmaxÞ

K0ð
ffiffiffiffiffiffiffi
2μ2

p
rmaxÞ

: ð24bÞ

219
220
221Figure 2 shows four examples of the rotation curves and
222symmetron profiles in good agreement with the data. These
223include one disk-dominated [Figs. 2(a), 2(e), and 2(i)], one
224bulge-dominated [Figs. 2(b), 2(f), and 2(j)], one gas-
225dominated [Figs. 2(c), 2(g), and 2(k)], and one with
226comparable bulge and disk components [Figs. 2(d), 2(h),
227and 2(l)]. The parameters of the model were taken to be
228M ¼ MPl=10 (for ρ̄0 ¼ 1 M⊙ pc−3), v=M ¼ 1=150 and
229μ ¼ 3 × 10−39 GeV. Shaded bands correspond to 50%
230variation in ρ̄0=M2. The parameters were chosen so as

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F2:1 FIG. 2. Example rotation curves for M ¼ MPl=10 and ρ̄0 ¼ 1 M⊙ pc−3, v=M ¼ 1=150, and μ ¼ 3 × 10−39 GeV: (a) disk, (b) bulge
F2:2 and (c) gas dominated, and (d) comparable disk and bulge components. Black points: observed radial velocities and corresponding error
F2:3 bars taken from the SPARC data set [17]. Solid black: total prediction, including the symmetron component. Solid orange: symmetron
F2:4 contribution. Shaded bands indicate 50% variation in ρ̄0=M2. Solid blue: baryon-only prediction. Red dashed: disk component. Green
F2:5 dotted: gas component. Purple dot-dashed: bulge component. Figures (e)–(h) and (i)–(l) show the corresponding symmetron profiles
F2:6 over the observed data range and 10 times that range, respectively.
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216therefore be specified independent of the unknown con-
217stants A and B as follows:
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φðrminÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ρð0Þ − μ2

q
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μ2ρð0Þ − μ2

q
rminÞ
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φ0ðrmaxÞ

φðrmaxÞ − v
¼ K0

0ð
ffiffiffiffiffiffiffi
2μ2

p
rmaxÞ

K0ð
ffiffiffiffiffiffiffi
2μ2

p
rmaxÞ

: ð24bÞ
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220
221Figure 2 shows four examples of the rotation curves and
222symmetron profiles in good agreement with the data. These
223include one disk-dominated [Figs. 2(a), 2(e), and 2(i)], one
224bulge-dominated [Figs. 2(b), 2(f), and 2(j)], one gas-
225dominated [Figs. 2(c), 2(g), and 2(k)], and one with
226comparable bulge and disk components [Figs. 2(d), 2(h),
227and 2(l)]. The parameters of the model were taken to be
228M ¼ MPl=10 (for ρ̄0 ¼ 1 M⊙ pc−3), v=M ¼ 1=150 and
229μ ¼ 3 × 10−39 GeV. Shaded bands correspond to 50%
230variation in ρ̄0=M2. The parameters were chosen so as

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F2:1 FIG. 2. Example rotation curves for M ¼ MPl=10 and ρ̄0 ¼ 1 M⊙ pc−3, v=M ¼ 1=150, and μ ¼ 3 × 10−39 GeV: (a) disk, (b) bulge
F2:2 and (c) gas dominated, and (d) comparable disk and bulge components. Black points: observed radial velocities and corresponding error
F2:3 bars taken from the SPARC data set [17]. Solid black: total prediction, including the symmetron component. Solid orange: symmetron
F2:4 contribution. Shaded bands indicate 50% variation in ρ̄0=M2. Solid blue: baryon-only prediction. Red dashed: disk component. Green
F2:5 dotted: gas component. Purple dot-dashed: bulge component. Figures (e)–(h) and (i)–(l) show the corresponding symmetron profiles
F2:6 over the observed data range and 10 times that range, respectively.
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Real galaxies in the SPARC dataset [Burrage, EC & Millington 2017, SPARC, Lelli et al 2016]

Gas dominatedBulge 
dominated

Disk 
dominated Comparable Disk and Bulge



24

231to remain in the weakly nonlinear regime, r2sμ2 ≪ 1, and
232are consistent with disk stability [see Eq. (19)] for reason-
233able values of

ffiffiffi
α

p
n≳ 10. The mass μ >

ffiffiffi
3

p
H0MPl=M

234(cf. Ref. [4]), whereH0 is the present-day Hubble constant,
235ensures that the symmetry is broken in the cosmological
236vacuum today.
237In the weakly nonlinear regime, the galaxies are
238unscreened at all radii, placing the present analysis in
239tension with Solar System constraints (see Refs. [5] and
240[22]). Observations of nearby distance indicators, i.e.
241cepheids, water masers and tip of the red giant branch
242stars, also indicate that these objects must be largely
243screened within dwarf galaxies [23]. We suggest that this
244tension may be lessened by moving to the strongly non-
245linear regime at smaller values ofM and larger values of μ.
246In this case, the fifth force will be more strongly screened at
247our radius from the Galactic center, becoming fully
248unscreened only at larger radii (where more significant
249modifications to the dynamics are required). In addition,
250local variations of the symmetron profile within the galaxy
251will be enhanced. However, in this regime, the disparity
252between the galactic scale length rs and the symmetron
253Compton wavelength leads to a highly stiff and numerically
254challenging differential system. Even so, by keeping a
255comparable ratio of μ2ρð0Þ=μ2, one might continue to
256explain the rotation curves and disk stability. This tension
257may also be lessened by invoking additional screening,
258e.g., via the Vainshtein mechanism (cf. Ref. [19]).
259The top two panels of Fig. 3 show the observed velocities
260versus the baryon-only [Fig. 3(a)] (cf. Ref. [8])
261and symmetron predictions [Fig. 3(b)] for the 153 galaxies
262[24] analyzed in Ref. [8]. The symmetron force is always
263attractive and so no acceleration parameters are predicted
264below those inferred from the baryonic component [see
265Fig. 3(c)]. In addition, the baryon-only and symmetron
266predictions converge at high accelerations, since the screen-
267ing of the fifth force is maximal towards the galactic center.
268The scatter in the symmetron predictions at low acceler-
269ations is in part due to the uncertainty on the three-
270dimensional density. However, having not binned the data,
271the contributions of individual galaxies are visible. Each
272shows a similar correlation with the baryonic predictions up
273to some systematic scaling, which may have a physical
274origin. We emphasise, however, that the present analysis
275treats each galaxy in isolation. In reality, the symmetron
276will be sensitive to the galaxy’s local environment, provid-
277ing an additional source of scatter. Moreover, variation of
278g†, e.g., with redshift [13], might be expected.

279VI. CONCLUSIONS

280We have shown that the symmetron mechanism can
281explain galactic rotation curves and the stability of galactic
282disks. This alone does not eliminate the need for dark
283matter, and some tension with local tests of gravity remains,
284but it motivates further study of the intriguing alternative to

(a)

(b)

(c)

F3:1 FIG. 3. Acceleration parameters: (a) observed total (gobs) versus
F3:2 baryon-only prediction (gbar), cf. Ref. [8]; (b) predicted total
F3:3 acceleration for the symmetron model (gtot) versus observed total
F3:4 (gobs); and (c) predicted acceleration (gtot) versus baryon-only
F3:5 prediction (gbar). The solid black lines in (a) and (c) correspond to
F3:6 the radial acceleration relation [Eq. (4)].
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Comparison with real data 
[Burrage, EC and Millington 2017]

Recent result — this radial acceleration relation 
(RAR) is the fundamental correlation governing 

the radial (in-disk) dynamics of late type 
galaxies. It can not be tightened - it sounds to 

me as if it is an important relation for any 
model to predict.   

 [R. Stiskalek and H. Desmond — arXiv:2305.19978017]
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Modified Gravity models can couple to the standard model particles - we can 
use particle collisions to look for fifth forces [Brax et al (2016), Aaboud et al (2019), 

S.Sevillano Munoz et al (2022)]  
Brans Dicke

Expand around Mink space

Fifth forces leak into the system via a kinetic mixing with gravity

Once we have BSM description we can calculate from quantum corrections the 
scattering amplitudes. But they are long and tedious to do. They require: expanding 
of gravity, canonical normalisation, expanding around non-trivial vevs, obtaining 

the kinetic mixings to graviton and then mass mixings

[credit: Sergio Sevillano Munoz]
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In flat space, particle phenomenologists use FeynRules - Mathematica package that 
goes from a Lagrangian gives Feyn Rules and phenomenology.

What about Gen Rel plus BSM ? 

Enter FeynMG written primarily 
by Sergio Sevillano Munoz A sub package of Feyn Rules 

[S.Sevillano Munoz et al, arXiv:2211.14300]

Allows user to insert new scalar dof and any grav theory. Can then perform the 
necessary operations to calculation the BSM description. 

Test scalar-tensor theories in colliders

What can FeynMG do?

22

Based on arXiv:2111.06357

A quick example to express my excitement:

Calculating by hand
fifth forces for an electron

Using MadGraph:

It took 0.45s to generate the
possible 212 diagrams

3-4 months of learning and mistakes 
in the process

vs

Based on arXiv:2211.14300

It can work with any scalar-tensor theory

COSMO’23

[credit: Sergio Sevillano Munoz]
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Return to Hubble tension - local v global - Early Dark Energy

[Di Valentino et al 2019]

H0=67.4±0.5 km s-1  Mpc-1  (Planck) v  H0=73.04±1.04 km s-1  Mpc-1 (Riess et al 2022)

In the Realm of the Hubble tension � a Review of Solutions 10

Figure 1. Whisker plot with 68% CL constraints of the Hubble constant H0 through
direct and indirect measurements by di↵erent astronomical missions and groups
performed over the years. The cyan vertical band corresponds to the H0 value from
SH0ES Team [2] (R20, H0 = 73.2 ± 1.3 km s�1 Mpc�1 at 68% CL) and the light pink
vertical band corresponds to the H0 value as reported by Planck 2018 team [11] within
a ⇤CDM scenario. A sample code for producing similar figures with any choice of the

data is made publicly available online at github.com/lucavisinelli/H0TensionRealm.

Lots of 
approaches 

being taken to 
determine H0
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Assuming the tension is a sign of new physics - many theoretical approaches.

Most of them make use of the standard ruler imprinted in the cmb maps - the 
Sound Horizon - the distance sound waves could propagate in a plasma from 

t=0 to t=1100.

Measure the angular size on the cmb, so have a distance and redshift to cmb.

One approach - use new physics early on to reduce the physical size of the 
sound horizon, hence decrease the distance we infer to the cmb (rem we 
measure the angular separation) - implying the H0 we infer increases !

Recall DA ~ 1/H0

r*s = ∫
∞

z*

dz
H(z) cs(z) → DA ∼ r*s

θ*s
→ H0

So the idea, have new physics early on, alter the energy density, change 
H(z). Concentrate here on EDE but also possible to have late time 

modifications to resolve the tension  [Zhao et al, Nature Ast 2017; Wang et al, Astro J. Lett 2018]
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The particle cosmologists tool of choice — a (pseudo) scalar field - ϕ

 initially frozen on its potential c/o Hubble friction - like DE with w=-1 

As H~m, rolls down potential and oscillates.  

Need late time w>0, so EDE energy density decays faster than matter. 

ϕ

Three EDE examples: 

axion EDE [Poulin et al, PRL 2019] 

V(ϕ) = m2f 2(1 − cos(ϕ/f ))n, m ∼ 10−27eV, f ∼ 1026eV, n = 3

Near minimum - eos - wϕ = n − 1
n + 1 = 1

2 > 0

2

The axion potential is given by V (�) / (1� cos [�/f ])n,
where � is the field value, f is the decay constant and n

is a (not-necessarily integer) constant. The choice n = 1
corresponds to the standard axion potential. At early
times the field acts like a cosmological constant, after
which it oscillates around the potential minima with an
e↵ective equation of state wn = (n� 1)/(n+ 1).

The axion model can be approximated by a fluid gov-
erned by 4 parameters, {ac,⌦a(ac), wn, ✓i}. The first,
ac is the critical value of the scale factor at which the
fluid transitions away from a cosmological constant, and
⌦a(ac) is the fractional energy density at this time. In
the fluid approximation the energy density evolves as [24]

⌦a(a) =
2⌦a(ac)

(a/ac)
3(wn+1) + 1

, (1)

with an equation of state

wa(a) =
1 + wn

1 + (ac/a)3(1+wn)
� 1 . (2)

Finally, ✓i is the initial field value and determines the
time and scale dependence of the e↵ective sound-speed,
cs [24]. Note that, for n ! 1, wn ! 1 and c

2

s
! 1. For

the best-fit axion model n ⇡ 3, with c
2

s
⇡ 0.7 over the

relevant times and scales of interest [12].
Once the perturbation equations are specified, the full

evolution of the fluid can be calculated. In the syn-
chronous gauge the equations for the density contrast,
�a and heat-flux ua, for the mode k, are [25],

�̇a = �


kua + (1 + wa)

ḣ

2

�
� 3H(c2

s
� wa)

⇣
�a + 3H

ua

k

⌘

�3H
ẇa

(1 + wa)

ua

k
, (3)

u̇a = �(1� 3c2
s
)Hua +

ẇa

(1 + wa)
ua + kc

2

s
�a , (4)

whereH = aH, cs is defined in the rest-frame of the fluid,
and the heat-flux, ua ⌘ (1 + wa)va, is favoured over the
velocity, va, for numerical stability when wa ⇡ �1.

Model-independent approach.—There are many theo-
retical models that modify the expansion history at early
times, so it is desirable to develop a model-independent
approach. To do this, we modify the Friedmann equation
with a set of N non-interacting fluids, each with energy
density ⌦i,

H
2(a) = H

2

0

"
⌦⇤CDM(a) +

NX

i=1

⌦i(a)

#
, (5)

where ⌦⇤CDM(a) is the total ⇤CDM density, consisting
of matter, radiation and a cosmological constant. For
each additional fluid, we choose a functional form for the
equation of state such that it scales like a cosmological
constant before a transition scale, ai, and as a sti↵ fluid
after,

wi(a) =
2

1 + (ai/a)�
� 1, (6)

FIG. 1. Reconstruction of the best-fit axion fluid (left) and
full scalar-field evolution (right). The axion fDE(z) is shown
by the dashed red curve, the reconstruction by the solid blue
curve, and each of the fitted spike components in solid grey.

where � > 0 is a parameter that sets the speed of the
transition. The energy density of each component is then

⌦i(a) = ⌦i

 
2a�i

a� + a
�
i

!6/�

, (7)

where ⌦i is the density at the transition scale. The case
� = 6 corresponds to an axion fluid with wn = 1.
We call this the spike model, since each component has

a maximum energy-density, relative to the background,
at ai. These can be thought of as a well-defined set of
basis modifications to H

2(a), since they obey �1  wi 

1 by construction. In our analysis, we choose a fixed set
of ai, logarithmically spaced from a = 5 ⇥ 10�6 to 1.
This means our reconstruction applies to both early and
late-time dark-energy. The lower limit is chosen as there
is little sensitivity in CMB data to EDE for a . 5⇥10�6.
Perturbations are modelled by treating the N fluids

as a single e↵ective fluid with equation of state, we↵ =P
i ⌦iwi/

P
i ⌦i, which is similarly bounded by �1 

we↵  1. We use the same perturbation equations as
the axion fluid, but assume the rest-frame sound-speed is
constant, with 0  c

2

s  1. Although our model is similar
to ADE [16], they only consider a single component with
a variable transition scale.
We find that N = 32 components with � = 6 is suf-

ficient to reconstruct a range of theoretical models with
‘smooth’ modifications to the expansion history, such as
the axion fluid and tracking models of quintessence, with
minimal bias. As an example, the left-hand panel of
Fig. 1 shows the dark energy fraction, fDE(z), of the
best-fit axion fluid to the baseline+ext data combina-
tion, defined in the following section. The amplitudes
of the spike model, ⌦i, are then fitted to minimise the
least-squares fit to fDE(z), with ⇠ 7 non-zero compo-
nents required. The sound speed is chosen to minimise
the least-squares fit to C

TT
` up to ` = 3000, with the

optimal value found to be c
2

s = 0.68. This ‘axion mimic’
model has �

2

axion
� �

2

mimic
= �3.3 when evaluated with

the full likelihood code, which can be attributed almost
entirely to the variable sound speed in the axion model.

An example of where the reconstruction fails is the full
scalar-field evolution of the axion. This is shown in the

[Moss et al, 2021]

Note occurs around matter radiation equality
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New EDE — driven by a first order phase transition [Niedermann and Sloth, PRD 2021]

V(ψ, ϕ) = λ
4 ψ4 + 1

2 βM2ψ2 − 1
3 αMψ3 + 1

2 m2ϕ2 + 1
2 λ̃ϕ2ψ2, ψ is tunneling field, ϕ trigger field

2

On the other hand, we believe that a first order phase
transition holds in it the potential to fully resolve the
discrepancy between the early and late measurements of
H0 much more naturally. In addition, a first order phase
transition will lead to di↵erent experimental signatures
in the details of the CMB and large-scale structure as
well as gravitational waves.

Below we explore the simplest NEDE model. For more
details and generalizations of the model, as well as a de-
tailed comparison with other models, we refer the reader
to our longer subsequent paper [46].

THE MODEL

In order to have a change in the vacuum energy due to a
field that undergoes a first order phase transition, we will
consider a scalar field with two non-degenerate minima at
zero temperature. However, if the tunneling probability
from the false to the true vacuum is initially high, the
field will tunnel immediately and NEDE never makes a
sizable contribution. On the other hand, once tunneling
commences, we need a large rate in order to produce
enough bubbles of true vacuum that will quickly collide.
If the rate is too small, then part of the Universe will be in
the true and part of it in the false vacuum, which will lead
to large inhomogeneities ruled out by observations. We
therefore require an additional sub-dominant trigger field
that, at the right moment, makes the tunneling rate very
high. Analogous to previously considered mechanisms
for ending inflation in [47–50], we will therefore consider
models with a general potential of the form,

V ( ,�) =
�

4
 

4 +
1

2
�M

2
 

2 (1)

�
1

3
↵M 

3 +
1

2
m

2
�

2 +
1

2
�̃�

2
 

2
,

where  is the tunneling field and � is the trigger field.
The sub-dominant trigger field will be frozen as long as its
mass is smaller than the Hubble rate, but as soon as the
Hubble rate drops below its mass, it will start decaying
and this will trigger the tunneling of the  field. For a
second minimum to develop after the point of inflection,
we need to impose ↵2

> 4��, � > 0. In Fig. 1, we show
a 3D visualization of the evolution of the potential as
the trigger field, �, starts evolving along the orange path
opening up the new vacuum for  , to which it tunnels
with high probability.

The decay rate per unit volume is � = K exp (�SE),
where K is a determinant factor which is generically set
by the energy scale of the phase transition [51, 52] and
SE is the Euclidian action corresponding to a so-called

late and/or early times see [21–45].

FIG. 1. Schematic plot of the two-field potential in (1). For
H <⇠ m, the field rolls along the orange line corresponding
to  = 0. At the inflection point (blue dot) the potential
(in  direction) develops a second minimum which becomes
degenerate shortly after (orange dot). The nucleation prob-
ability increases towards � = 0 (red dot). The true vacuum
corresponds to the white dot.

bounce solution [53]. While it is possible to find an an-
alytic expression in the thin wall limit for a single field,
the general case requires a numerical approach. In [46]
we argue that a good approximation of the Euclidian
action (describing the potential as being e↵ectively one-
dimensional) can be written as

SE ⇡
4⇡2

3�
(2 � �e↵)�3 �

↵1�e↵ + ↵2�
2
e↵ + ↵3�

3
e↵

�
, (2)

with numerically determined coe�cients [54] ↵1 =
13.832, ↵2 = �10.819, ↵3 = 2.0765 and

�e↵(t) = 9
�

↵2

✓
� + �̃

�
2(t)

M2

◆
. (3)

We see that SE becomes large as �e↵ ! 2 and vanishes
as �e↵ ! 0. As a result, the tunneling rate is suppressed
when � is frozen at a su�ciently large initial field value
(corresponding to �e↵ > 9/4 ⇠ 2) and becomes maximal
as �! 0 once the Hubble drag is released (corresponding
to �e↵ ! 9��/↵

2
< 9/4).

At early times, we require the transition rate to be
highly suppressed, which fixes the initial value of the trig-
ger field, �ini, and can be satisfied consistently with the
condition that �ini/Mpl ⌧ 1, which is su�cient to ensure
that the contribution of � to the total energy density is
sub-dominant.

Now, we also have to ensure that NEDE, given by the
potential energy in the  field, gives a sizable contri-
bution to the energy budget at the time t⇤ where bub-
ble percolation of the  vacuum becomes e�cient. We
can quantify it in terms of the ratio fNEDE = �V/⇢̄(t⇤),
where �V is the liberated vacuum energy and ⇢̄ the total
energy density. If the transition occurs at a redshift of
order z ⇠ 5000, � ⇠ 0.1, ↵ ⇠ � ⇠ O(1) and fNEDE ⇠ 0.1,
we have M ⇠ eV and an ultra-light mass scale of order

False vacuum decay of  from cosm const source to decaying field with 
const eos w>0 around eV scale. 

ψ

H0 = 71.4 ± 1.0kms−1Mpc−1, with decay at z* = 4920+620
−730 and with fNEDE = 0.126+0.03

−=.03
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Massive neutrino driven EDE — [Sakstein and Trodden, PRL 2020, for earlier related work see 
Amendola et al 2008 ]

Idea: If EDE field  is coupled to neutrinos with strength , it receives a large 
injection of energy around the time that neutrinos become non-relativistic, 

which is when their temp ~ their mass, just before matter-rad equality.  

Nice feature - neutrino decoupling provides trigger for EDE by displacing  
from min of it’s potential . 

ϕ β

ϕ
V(ϕ) = λϕ4/4 3

1000 104 105 106 107

1.×10-9

2.×10-9

3.×10-9

4.×10-9

5.×10-9

FIG. 2. The field as a function of redshift (red, solid). The
blue dashed line shows the analytic prediction in equation (8).
We take m⌫ = 0.5 eV, � = 4⇥ 10�4, and � = 10�75.

the EOM (4), the e↵ect of the neutrino coupling is to
kick the scalar out of its minimum and up its potential
when T⌫ ⇠ m⌫ [40–43].

We can estimate the magnitude of the kick as follows.
First, we relate the neutrino temperature to the Hubble
expansion via 3H2

Mpl
2 = ⇡

2
/30g?(T�)T 4

� so that the
EOM is

�̈+3H�̇+V
0(�) = �

45

⇡4

✓
4

11

◆ 4
3 �g⌫

g?(T�)
H

2
Mpl⌧

✓
m⌫

T⌫

◆
.

(7)
Let the temperature T⌫ = m⌫ at time tk. Since the
integral is highly-peaked around this point, we can ap-
proximate the kick as a delta function so that ⌧(x) ⇡

7�(t� tk)/8H, assuming that the energy is injected over
a Hubble time. Neglecting the potential, we can then
integrate equation (7) twice (g?(1 eV) ⇡ 3.38 and we as-
sume the Universe is radiation-dominated) to find that �
is displaced from its initial location by an amount

�k ⇡ �0.03�Mpl. (8)

This is the key result of our proposal. Equation (8) is
a natural initial condition for any EDE model where
the scalar begins to roll shortly before matter-radiation
equality. Furthermore, it is not necessary to fine-tune the
mass to match the Hubble parameter around this time
since the field is naturally displaced from the minimum
due to its neutrino coupling.

The novel features of our mechanism are insensitive to
the precise form of the scalar potential but to explore
further we will take V (�) = ��

4
/4. The action (2) has

an approximate scale-invariance broken by the neutrino
mass term, so adding a scale-invariant potential is natu-
ral. Furthermore, it was shown in [44] that this potential
provides a good fit to the various data sets and can al-
leviate the Hubble tension by raising the derived value
of H0 to 72.3 km/s/Mpc (at 2�). We have numerically
solved the EOM (7) in conjunction with the Friedmann

equations,

3H2
Mpl

2 = ⇢m + ⇢� +
�̇
2

2
+

�

4
�
4 + ⇤Mpl

2 (9)

Ḣ

H2
= �

1

2Mpl
2

 
X

i

(⇢i + Pi) + �̇
2

!
, (10)

where i = {m,�} and ⇤ is the cosmological constant
driving dark energy today. Representative results for
m⌫ = 0.5 eV (corresponding to the upper bound from
Planck [38] and assuming that the heaviest neutrino has
a mass around this value), � = 4⇥ 10�4, and � = 10�75

are shown in figure 2. One can see the qualitative fea-
tures discussed above are borne out. The field begins at
its minimum in the early Universe, but when the temper-
ature drops to values near the neutrino mass it is kicked
up its potential to a value close to our analytic predic-
tion in equation (8). Thereafter, Boltzmann suppression
rapidly diminishes the driving term so the field falls back
towards the minimum. The parameters were chosen to
exemplify this scenario, and one avenue for future re-
search would be to determine the best-fitting potential
and parameters using a full Markov Chain-Monte Carlo
analysis, but this would require a rederivation of the neu-
trino Boltzmann hierarchy to include the EDE coupling.
Such an analysis is beyond the scope of the present work,
and will be performed separately.
Clearly, the qualitative features our mechanism will

be similar for any choice of scalar potential, and so can
be implemented into any of the EDE models that have
been proposed. Another interesting possibility is to use
the novel feature of energy injection into the scalar to
construct alternative scenarios that cannot be achieved
using quintessence-like models alone. To give one exam-
ple, the kick from the neutrinos can be energetic enough
to push the field over a local maximum in the potential.
One can then envision a scenario where the field begins
in a false vacuum, and, provided the lifetime of this min-
imum is long enough that tunneling does not occur, this
field acts as EDE. When the temperature is of order the
neutrino mass, the kick pushes the field over the local
maximum, and, if the potential is steeper on the other
side, the energy will rapidly dissipate. This scenario is
certainly intriguing and it would be interesting to con-
struct an explicit example in detail. This model-building
exercise is postponed for future work.
Our theory is an e↵ective field theory (EFT) and re-

quires a UV-completion. In particular, the SU(2)L struc-
ture of the standard model is broken by our scalar-
neutrino interaction, and the neutrino mass term. It is
not di�cult to construct UV-completions of these mass
terms using, for example, additional Higgs fields, see-saw
mechanisms, or supersymmetry. It is also possible to
do this in a technically natural manner [45, 46]. Incor-
porating additional singlet scalars is trivial within this
framework. It would certainly be interesting to embed

mν = 0.5eV, β = 4 × 10−4, λ = 10−75

For approaches resolving the Hubble tension using impact of screened fifth forces 
on the distance ladder see [Desmond et al, PRD 2019, Baker et al, Rev Mod Phys 2021]
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More general approach to DE - spike model  

[Moss, EJC, Bamford and Clarke 2021 - for similar approach see also Lin et al 2019 and Hojjati et al 2013]  

Model DE by perfect fluid with series of bins in energy density, with eos 
. Combine with cmb, BAO and local H0 data obtain improvement over 

CDM with DE contributing significantly between  
−1 ≤ w ≤ 1
Λ z ∼ 104 − 105 and c2

s ∼ 1/3.3

right-hand panel of Fig. 1. Although the fitted compo-
nents match the overall behaviour of fDE(z), they are
unable to recover the oscillatory behaviour. This would
require an even larger number of components and higher
�, which would make a reconstruction using cosmological
data very challenging.

Data and Results.—We perform a Markov Chain
Monte Carlo (MCMC) analysis of the ⇤CDM , axion
fluid and spike models using the public Cobaya [26]
and Camb codes [27]. We find some of the posterior
distributions are lightly multi-modal and chains have
long mixing-times, so incorporate the ensemble sampler
emcee [28] to sample over the model parameters P,
which can improve autocorrelation times over traditional
MCMC methods. We run 100 walkers in the ensemble,
using a combination of the a�ne invariant stretch [29]
and di↵erential evolution moves. The minimum �

2 is
then found by BOBYQA minimisation, using the chain
best-fit as an initial guess [30]. Performing this step is
especially important with a large number of parameters,
as the best-fit from the chain can be significantly worst
due to sampling error. We use the following datasets:

Baseline: We use Planck 2018 data [1] in combination
with BAO data from BOSS DR12 [31], 6dFGS [32] and
SDSS-MGS [33]. The Planck likelihoods used are the TT,
TE and EE spectra at ` � 30, the low-` likelihood using
the Commander component separation algorithm [34],
the low�` EE likelihood from the SimAll algorithm, and
lensing [35]. In order to reduce the number of MCMC pa-
rameters, we use the foreground marginalized ‘lite’ ver-
sion of the Planck likelihood.

Ext: We include the SH0ES H0 measurement from
[3] and high ` CMB data from Act DR4 [23]. For Act
we exclude the large scale temperature data, to minimise
double counting when combining with Planck2. In addi-
tion, we include the Pantheon SN sample [37].

S8 prior: EDE models tend to have an increased value
of S8 compared to ⇤CDM. To quantify this, we perform
additional runs with the inclusion of a S8 prior, using the
DES value of S8 = 0.776 ± 0.017. We use a prior rather
than the full likelihood again to reduce the number of
MCMC parameters, and this has been shown to be a
good approximation for the axion [38].

We first produce runs for ⇤CDM and the ax-
ion fluid, assuming flat priors on the base ⇤CDM
parameters,

�
H0,⌦ch

2
,⌦bh

2
, ns, log(1010As), ⌧

 
, and

{zc, fDE(zc), wn, ✓i} for the axion. We use H0 rather
than ✓? as a base parameter, to ensure any preference
for larger H0 is not prior driven ([39] demonstrates this

2 It is shown in [36] that increased accuracy settings are required
in Camb in order to give full convergence in the Act �

2. Our
analysis is performed at the default settings, as these higher ac-
curacy settings require an order of magnitude longer runtime.
We have checked that for a sample of models, the absolute Act
�
2 values are accurate to 2 � 3, and the relative �

2 di↵erences
with respect to ⇤CDM are even smaller.

FIG. 2. fDE(z) for the axion fluid (top-row) and the spike
model without (middle) and with (bottom) a covariance prior.
On the left (right) we show results without (with) a DES S8

prior, otherwise using the baseline+ext dataset. 1 and 2�
confidences are indicated by the dark and light blue regions,
and the best-fit by the dashed line. The dark energy includes
the cosmological constant contribution. The inset shows the
resulting late-time w(z) reconstruction.

issue when reconstructing the ionization fraction). As per
the Planck analysis, neutrinos are modelled as 2 massless
species, and one massive species with m⌫ = 0.06 eV.
For the axion fluid, we find a ��

2 = �16.2 improve-
ment over ⇤CDM for the baseline+ext dataset, which
is consistent with other studies3. The bulk of this
(��

2

H0
= �12.3) comes from the SH0ES measurement,

with a smaller contribution of ��
2

ACT
= �5.2. In the

recent analysis of [36], they find a preference for a scalar-
field axion when combining large-angle Planck (` < 650)
and Act data (��

2

ACT
= �16.1), driven primarily by an

improved fit to the Act EE spectrum. However, this
e↵ect largely disappears when combined with the full
Planck data (��

2

ACT
= �6.1), similar to our findings.

The axion model is therefore unable to fully account for
the Planck + Act tension (see also [40]).

The resulting fDE(z) is shown in the top-left panel
of Fig. 2, with a marginalised value of fDE(zc) =
0.050+0.023

�0.033, occurring at zc = 5417+470

�2000
. Analysing the

posterior distributions, one can observe a bi-modality in
wn, with peaks at wn ⇡ 1/2 and wn ⇡ 1/3. The former
has a higher likelihood, and the latter is correlated with a
higher zc and lower fDE(zc), which will be relevant when
we come to interpret the results from the spike model.

3 A slightly improved fit is possible when considering the full
scalar-field evolution [12].

Δχ2 = − 10.8

Δχ2 = − 34.4

Δχ2 = − 14.0

 S8 = 0.776 ± 0.017

inc DES S8 prior
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4

Parameter ⇤CDM Axion Fluid Spike Spike (+ Covariance Prior)

H0 68.48± 0.32 (68.44) 70.03+0.81
�1.1 (70.95) 72.25+0.93

�1.2 (73.59) 70.9+1.0
�1.3 (71.29)

⌦m 0.3001± 0.0041 (0.3006) 0.2975+0.0044
�0.0049 (0.2950) 0.3027+0.0062

�0.0055 (0.2978) 0.2948± 0.0054 (0.2952)

ns 0.9729± 0.0030 (0.9728) 0.9810+0.0060
�0.0073 (0.9834) 0.9703± 0.0083 (0.9636) 0.9805+0.0081

�0.0063 (0.9833)

c
2

s - - 0.334+0.021
�0.039 (0.3125) 0.401+0.10

�0.090 (0.4153)

wn - 0.475+0.087
�0.18 (0.3523) - -

zc - 10240+2000

�8000
(5460) - -

fEDE(zc) - 0.0272+0.0097
�0.021 (0.03609) - -

S8 0.8075± 0.0077 (0.8073) 0.814± 0.010 (0.8133) 0.8182± 0.0099 (0.8183) 0.812+0.011
�0.0094 (0.8151)

�
2

H0 15.5 4.7 (-10.8) 0.1 (-15.4) 3.7 (-11.8)

�
2

Planck 1017.0 1020.0 ( 3.0) 1009.2 (-7.8) 1018.3 ( 1.3)

�
2

ACT 240.7 235.3 (-5.4) 225.3 (-15.4) 234.4 (-6.3)

�
2

S8 3.4 4.8 ( 1.4) 6.2 ( 2.8) 5.3 ( 1.9)

�
2

data 2316.7 2305.9 (-10.8) 2281.4 (-35.4) 2302.8 (-14.0)

�
2

prior 0.0 0.0 0.0 3.8

� lnE - - - 5.0

TABLE I. Mean and best-fit parameter values for the ⇤CDM, axion fluid and spike models, for the baseline+ext+S8 dataset.
Consistent parameters and �

2 values have been suppressed.

The result of applying the DES prior is shown in the
top-right panel of Fig. 2 and Table. I. The ��

2 improve-
ment over ⇤CDM is now reduced to �10.8, primarily
due to a poorer fit to Planck (��

2

Planck
= +3.0) and a

slightly higher S8 value. As noted in [41], however, al-
though the axion does not bring about concordance, it
does not significantly worsen the fit compared to ⇤CDM.

For the spike model we assume flat priors on 0  c
2

s
 1

and�5  �i  0, where�i = log
10

[⌦i/⌦⇤CDM(ai)]. We
use a log transform due to the large dynamical range –
near z ⇠ 5000 the data requires �i . �4 to be indis-
tinguishable from ⇤CDM, but the upper 2� limits can
be as high as �i ⇡ �1. As discussed in the next sec-
tion, an unbounded prior is also required when applying
a Gaussian correlation prior.

One issue with this parameterisation is that the likeli-
hood is slowly varying for low �i, which means the pos-
terior is dominated by large, flat regions with a relatively
good likelihood. The best-fitting models occupy a much
smaller volume, and although they have an improved �

2,
the chains mix slowly with a long auto-correlation time.
In our runs we have sampled for 15000 iterations but still
observe some slowly varying features in the trace plots.
We have checked our results aren’t significantly a↵ected
by performing di↵erent sample splits along the chain, and
observe similar empirical means and variances.

With increased freedom in fitting the expansion his-
tory, we find a large ��

2 = �41.3 improvement over
⇤CDM for the baseline+ext dataset, and ��

2 = �35.4
with the inclusion of the DES prior. These represent im-
provements of ��

2 = �25.1 and ��
2 = �24.6 over the

axion fluid. The best-fit H0, shown in Table. I, is now
almost entirely consistent with the SH0ES value. What
is perhaps more intriguing is a substantial improvement

to the joint Planck + Act data, with ��
2

Planck
= �7.8

and ��
2

ACT
= �15.4.

In Fig. 3 we show residuals of the TT, TE and EE
power spectra for the axion and spike models, derived
using baseline+external+S8 data, versus ⇤CDM using
only baseline+Act data. In contrast to the axion, the
spike model is able to fit the dip in the EE spectrum at
` ⇠ 650. It is also able to better fit the residuals in TT
data in the range 500 < ` < 1200.

The reconstruction of fDE(z) for the spike model with
minimal prior assumptions is shown in the middle panel
Fig. 2, along with an inset of w(z) at late-times. The
reconstruction shows no preference for deviations from
⇤CDM at late-times, but a strong preference for EDE in
the range z ⇠ 103 � 105. Interestingly, fDE(z) is signifi-
cantly di↵erent to the axion model, with a large peak at
z ⇠ 105, after which it decays, on average, only slightly
faster than the background. There is also a strong pref-
erence for a lower sound speed of c2

s
⇠ 1/3. This means

that the EDE is behaving like, but not exactly the same
as, additional radiation. Despite a large fDE(z) at high
z, it has a diminishing e↵ect on the CMB. The visibility
averaged r?, which weights the relative contribution by
redshift, is peaked near z? [9]. For the best-fit model in
the middle panel Fig. 2, over 50% of the change in r?

occurs in the range z = 103 to z = 104, despite a much
lower fDE(z).

Beyond changes to the background, the dominant ef-
fect on the CMB power spectrum is radiation-driving due
to the decay of the Weyl potential, similar to ADE [16].
For a given ⌦i, with all other components zero, there is
an enhancement in the Weyl potential close to ai, then a
subsequent decay (leading to increased radiation-driving)
as the dark energy perturbations stabilise due to c

2

s
. The

A few details

The high z behaviour of EDE changes the radiation driving envelope that 
modifies the high l CMB power spectrum, potentially alleviating the tension 

between Planck and ACT data -see [Hill et al 2021]

Note - none of these models really address the S8 tension - cmb v lss
Once the 33 spike parameters inc, find moderate Bayesian evidence for EDE 

[following the approach developed in [Crittendon et al, JCAP 2012; Zhao et al, PRL 2012]]
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A nice feature of scaling solutions - they tend to generate bumps in their 
energy density as they approach their attractor solutions

Figure 2. Evolution of a scalar field with a matter-like fluid (�e↵ = 1). The evolution of each of the di↵erent

densities versus N is represented in the left panel, using the same colour code as in Fig. 1 while in the right

panel we show the corresponding (x, y) phase space. Note how the peak (black dot) in ⌦� corresponds to the

orbits of the scalar field around the fixed point.

As we can see in Figure 1, the early-time scalar field energy density is dominated by the
potential term (y) up to the peak. Moreover, since in order to address the Hubble tension the
peak must take place before or at matter-radiation equality, the scalar field will be evolving
there in a radiation-dominated universe (�e↵ ⇠ 4/3). Since x ⌧ 1 and x ⌧ �, it follows that
before the peak has been reached, Eqs. (2.15)-(2.16) become

x0 ⇡ �x+

r
3

2
�y2, (2.19)

y0 ⇡ 2y, (2.20)

yielding early-time solutions

xearly(N) ⇡ (xi � ai)e
��Ni + aie

4�Ni , (2.21)

yearly(N) ⇡ yie
2�Ni , (2.22)

where �Ni = N �Ni, Ni is the initial time, xi and yi are the respective initial values and

ai =

r
3

2

�y2i e
4Ni

5
. (2.23)

These solutions are valid as long as we can drop the higher order terms in Eqs. (2.15)-(2.16),
which takes us close to when the peak in ⌦� takes place, a time we call N1. To be more
specific we can estimate this time as being the moment yearly(N) first passes its final fixed
point value Eqs. (2.18), which implies (assuming the energy density is equally split between
x and y),

yearly(N1) ⇡
q
⌦(sc)
� /2. (2.24)

Using Eqs. (2.18) and (2.22), we obtain the following estimate of the time of the peak

N1 ⇡ Ni +
1

2
log

✓p
3�e↵

yi�
p
2

◆
. (2.25)
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analysis showing the significance of the results. In particular, we show the problems faced
by quintessence models, and the fact that the case n = 3/2 provides the best fit to the data.
Finally, we conclude in section 5.

2 Attractor solutions in Quintessence

In this section, we develop the argument that scalar field evolution in the presence of a
background fluid can experience scaling solutions where the energy density of the scalar field
aims to become a fixed fraction of that of the dominating background fluid. In following that
trajectory, there is a short period of time when the energy density stored in the scalar field
itself, increases briefly as it readjusts. It is this increase that can provide the input required
to address the Hubble tension, and in what follows we first of all show the principle of it.

We begin by introducing the equations of motion, for a system containing a canonical
scalar field � with potential V (�) and two barotropic fluids with energy density ⇢� (radia-
tion) and ⇢m, (matter, both baryonic and non-baryonic) with equations of state �r = 4/3
and �m = 1 respectively, defined in terms of their pressure (p) and energy density (⇢) by
p = (� � 1)⇢. For completeness we also include a cosmological constant ⇢cc = ⇤

2 (with an
associated equation of state �cc = 0) to provide the late time dark energy of the universe, al-
though in the analytic analysis below we will drop this term as it is completely sub-dominant
around matter-radiation equality, when the e↵ect we are seeking to explain occurs. However,
we keep the full equations in the numerical solutions we compare to in section 4.

The Friedmann equation is given by:

H2 =
2

3

 
⇢r + ⇢m + ⇢cc +

�̇2

2
+ V (�)

!
, (2.1)

where  =
p
8⇡G, H ⌘ ȧ/a is the Hubble constant with a(t) the scale factor and ȧ ⌘

da
dt . The

dynamics and stability of the system will depend on the specific choice for the potential V (�).
A natural choice is an exponential potential1, V (�) = V0 exp (���), with slope parameter
� = const, since it presents scaling behavior at late times, as well as the intermediate regime
of increased energy density we are searching for. We will begin by recalling its properties
in section 2.1 before then moving onto more general potentials with time-dependent slopes
�(�) in section 2.2.

2.1 Exponential potential with a constant slope parameter �

The fluid and scalar field equations of motion are

⇢̇r =� 3H�r⇢r

⇢̇m =� 3H�m⇢m (2.2)

⇢̇cc =� 3H�cc⇢cc

�̈+ 3H�̇+ V,� (�) = 0.

1
[Serg: Although we don’t consider the cosmological constant in the analytic analysis, notice that it is possible

to absorb it into the potential as a constant term. However, as will be shown in section 2.1 and 2.2, that would

break the simple form of the parametric equations for the exponential potential case (Eqs. (2.6-2.9)).] How is this

consistent with our claim we can do more general �(�)?[Serg: More positive, say that we’ll deal with it in section

2.2]
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where V,� (�) ⌘
dV
d� . Following the prescription introduced in [16] we convert these equations

to first-order ones by introducing, the dimensionless density parameters

x =
�̇

p
6H

y =

p
V

p
3H

z =

p
⇢r

p
3H

l =

p
⇢cc

p
3H

, (2.3)

which from the Friedmann constraint (2.1) gives the dimensionless energy density in matter
via

⌦m ⌘
2⇢m
3H2

= 1� (x2 + y2 + z2 + l2), (2.4)

whilst for completion, we have the important quantity, the dimensionless energy density in
�,

⌦� =
2⇢�
3H2

= x2 + y2. (2.5)

Di↵erentiating the parameters (x, y, z, l) with respect to the number of e-folds (N = log a),
leads to the following closed system (using �r = 4/3, �m = 1, �cc = 0):

x0 =

r
3

2
�y2 �

x

2
(3� 3x2 + 3y2 � z2 � 3l2), (2.6)

y0 = �

r
3

2
�xy +

y

2
(3 + 3x2 � 3y2 + z2 + 3l2), (2.7)

z0 = �
z

2
(1� 3x2 + 3y2 � z2 � 3l2). (2.8)

l0 =
l

2
(3 + 3x2 � 3y2 + z2 + 3l2) (2.9)

where x0 ⌘ dx
dN and we have already substituted the exponential potential with a constant

slope parameter �,
V (�) = V0 exp (���). (2.10)

To reiterate, here and in section 3 we drop ⇢cc from Eqs. (2.6-2.9) since we are focusing on
the e↵ects of the scalar field around matter-radiation equality, where l2 ⌧ 1. Although this
set of equations allows us to see the evolution of each energy parameter, it proves convenient
to introduce the e↵ective equation of state of the background radiation and matter fields,
defined via

�e↵ = 1 +
p� + pm
⇢� + ⇢m

= 1 +
1

3

✓
z2

1� x2 � y2

◆
. (2.11)

We see that �e↵ is a particularly useful parameter to use because it only varies between
1  �e↵  4/3, compared to z which varies between 0 and 1. With this in mind, we can
replace z in terms of �e↵ and the system of equations (2.6) - (2.8) become

x0 =

r
3

2
�y2 +

3x

2
(�2 + 2x2 + �e↵(1� x2 � y2)), (2.12)

y0 = �

r
3

2
�xy +

3y

2
(2x2 + �e↵(1� x2 � y2)), (2.13)

�0e↵ = (�e↵ � 1)(3�e↵ � 4). (2.14)

We begin the analysis by noting that throughout both its early and late evolution the scalar
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where V,� (�) ⌘
dV
d� . Following the prescription introduced in [16] we convert these equations
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Di↵erentiating the parameters (x, y, z, l) with respect to the number of e-folds (N = log a),
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Figure 1. Evolution of a scalar field with an exponential potential Eq. (2.10) in a background containing

matter and radiation baryotropic fluids. We can see that during its evolution to the scaling solution fixed

point, the field has a local peak in its energy density. The solid yellow line corresponds to ⌦r, the dotted

purple line to ⌦m, the solid blue line to ⌦�, where as the red dashed and green dashed-dotted lines correspond

to the kinetic and potential energy contributions to ⌦� respectively.

field needs to be subdominant, having to satisfy an upper bound at matter domination of
⌦� < 0.02 [5] (for an example see Figure 1). From Eqn. (2.5), we can therefore neglect terms
cubic in x and y, implying that Eqns (2.12)-(2.14) become
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3

2
�y2, (2.15)
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2
�xy, (2.16)

�0e↵ ⇡ (�e↵ � 1) (3�e↵ � 4) . (2.17)

Note, the nice feature that �e↵ has fixed points for both matter and radiation domination
(�e↵ = 1 and �e↵ = 4/3, respectively). It is not di�cult to show that the fixed point
(assuming �e↵ constant) is given by

xsc =

r
3

2

�e↵
�

ysc =

✓
3

2

�e↵(2� �e↵)

�2

◆1/2

⌦sc
� =

3�e↵
�2

�� =�e↵ , (2.18)

corresponding to the scaling solutions found in [16] (for �e↵ = 1 and �e↵ = 4/3). Therefore,
depending on the background fluid that is dominating, as long as �2 > 3�e↵ , there is a
spiral stable attractor solution where � evolves so that its energy density tracks that of the
dominating background fluid, ruled by �e↵ , behaving as radiation in the early universe, and
evolving into matter like behaviour in the matter dominated regime. This is well known [16,
18], but there is an interesting element that appears to have been overlooked and could be
relevant in addressing the Hubble tension. As shown in Figure 1, due to the spiraling nature
of the fixed point, the scalar field will experience oscillations around the attractor in its
trajectory. Thus, as these oscillations are damped, the first will lead to a peak in the energy
density, which if placed right before matter-radiation equality could alleviate the observed
tension. We turn our attention now to analytically determining the properties of the peak,
its location in time, and its magnitude in height.
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In summary, we can predict the behavior for a scalar field with a generic potential as long
as its associated �̃ varies slowly. For this, we just need to find the value for �̃ at the time
of the peak, and use the same analysis and equations we used in the exponential case but
using the approximated �̃1. Unfortunately, there is one major drawback with Quintessence
models. they lead to a sound speed c2s = 1 of the field �, and as we will see in section 4, the
data seems to favour c2s < 1 around the time of EDE [8, 9, 17]. Partly with that in mind,
but also to allow us to consider such models in their own right, in the next section, we will
extend this method to a class of models with non-canonical scalar fields, known as K-essence
models, and show how they too can lead to observationally viable periods of EDE.

3 K-essence case: L(X,�) = Xn
� V (�)

So far we have concentrated on the evolution of a canonical scalar field in the early universe,
asking how it can address the Hubble tension. To date, relatively little attention has been
paid to the role non-canonical fields could play, yet these are known to have some very
interesting cosmological properties and arise in a number of particle inspired settings [11–
13, 15, 20–23] although there have been questions raised over their ability to act as dark
energy [24]. We are going to consider it here as a way of providing successful EDE. With
that in mind, we consider a class of simplified such models, with Lagrangian’s of the form

L =
X(�̇)n

M4(n�1)
� V (�), (3.1)

where X(�̇) ⌘ 1
2 �̇

2, M is a mass scale introduced to keep the action dimensionless and n is
a constant. Of course, n = 1 corresponds to a canonical scalar field. One of the interesting
aspects of these models is that they lead to reduced sound speeds of the field �. In particular,
we find for this case [25, 26]

c2s =
1

2n� 1
, (3.2)

depending on the exponent in the kinetic energy functionX(�̇). A number of the proposals for
early dark energy have included resolutions that include reduced sound speeds, for example
see [17, 27]. In what follows, we keep n general, allowing us to constrain the full parameter
space of n.

For completeness, we begin by once again introducing the equations of motion for our
system, which now contains the non-canonical Lagrangian Eqn. (3.1), plus the two barotropic
fluids introduced in section 2, with energy density ⇢r (radiation) and ⇢m, (matter, both bary-
onic and non-baryonic) and equations of state �r and �m respectively [15]. The Friedmann
equation is given by

H2 =
2

3

✓
⇢r + ⇢m +

2n� 1

2nM4(n�1)
(�̇2)n + V (�)

◆
, (3.3)

while the fluid and scalar field equations of motion are

⇢̇r =� 3H�r⇢r

⇢̇m =� 3H�m⇢m (3.4)

n(2n� 1)

2n�1M4(n�1)
�̇2n�2 �̈+

3Hn

2n�1M4(n�1)
�̇2n�1 + V,� (�) = 0.
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where V,� (�) ⌘
dV
d� . Following the prescription introduced in [16] we convert these equations

to first-order ones by introducing, the dimensionless density parameters
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which from the Friedmann constraint (2.1) gives the dimensionless energy density in matter
via

⌦m ⌘
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3H2

= 1� (x2 + y2 + z2 + l2), (2.4)

whilst for completion, we have the important quantity, the dimensionless energy density in
�,

⌦� =
2⇢�
3H2

= x2 + y2. (2.5)

Di↵erentiating the parameters (x, y, z, l) with respect to the number of e-folds (N = log a),
leads to the following closed system (using �r = 4/3, �m = 1, �cc = 0):
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where x0 ⌘ dx
dN and we have already substituted the exponential potential with a constant

slope parameter �,
V (�) = V0 exp (���). (2.10)

To reiterate, here and in section 3 we drop ⇢cc from Eqs. (2.6-2.9) since we are focusing on
the e↵ects of the scalar field around matter-radiation equality, where l2 ⌧ 1. Although this
set of equations allows us to see the evolution of each energy parameter, it proves convenient
to introduce the e↵ective equation of state of the background radiation and matter fields,
defined via
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We see that �e↵ is a particularly useful parameter to use because it only varies between
1  �e↵  4/3, compared to z which varies between 0 and 1. With this in mind, we can
replace z in terms of �e↵ and the system of equations (2.6) - (2.8) become

x0 =

r
3

2
�y2 +

3x

2
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2
(2x2 + �e↵(1� x2 � y2)), (2.13)

�0e↵ = (�e↵ � 1)(3�e↵ � 4). (2.14)

We begin the analysis by noting that throughout both its early and late evolution the scalar
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Figure 7. Evolution of a k-essence (X2
) scalar field with an exponential potential in a background containing

both matter and radiation baryotropic fluids. Although the late time fixed point is at x = y = 0, the system

presents a peak during its trajectory as ⌘ begins to grow.

We note the close resemblance between these equations and the particular set of Quintessence
equations Eqs. (2.40-2.43), where the only di↵erences are in the form of the evolution of ⌘
(corresponding to the time-dependent �̃ in Quintessence) and one of the terms in the evolution
of x. The natural late time evolution of the system Eqs. (3.15)-(3.18) for fixed �e↵ is

xsc ! 0 ysc ! 0 ⌘sc =

r
2

3

✓
3n

2n� 1

◆
x

y2
! 1. (3.19)

Therefore, naively, for a system that starts close to the fixed points x = y = 0 we expect little
evolution. However, as we saw in Section 2.2, even though x and y start close to their late
time fixed points, ⌘ (in that case �̃) starts far from it, and this is what leads to a non-trivial
evolution of the field. In fact, the similarity with the set of Quintessence equations Eqs. (2.40-
2.43) doesn’t end there. It suggests that we should be able to use a similar approach to that
adopted in section 2.2 for �̃. In this way, we may find an evolution for a system with a
constant ⌘ case that matches the full evolution of K-essence (with varying ⌘) up to the peak,
as the exponential case matched the Fang et al. model in Section 2.1.

For the case where we have a constant ⌘ = ⌘c, equations (3.15)-(3.18) reduce to
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3

2
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2 +
3x

2
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◆
, (3.20)
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◆
, (3.21)

�0e↵ = (�e↵ � 1)(3�e↵ � 4), (3.22)

which has the following spiral stable fixed point (assuming a constant �e↵ and n 
2�e↵

2�e↵�1)
2

x(sc) =

r
3

2

�e↵
⌘c

, y(sc) =

r
3

2

p
�e↵
⌘c

s
2n

(2n� 1)
� �e↵ , ⌦(sc)

� =
3n�e↵

(2n� 1)⌘2c
, �(sc)� =�e↵ .

(3.23)

2
Notice that in a radiation dominated universe (�e↵ = 4/3) this fixed point ceases to exist for n � 2, which

will be used later to rule out a whole range of K-essence models.
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n=2

MCMC fit : constraints on Quintessence from sound speed and K-essence 
from rate at which energy density drops

Parameter ⇤CDM K-essence Fang

H0 68.16± 0.34 (68.17) 69.6± 1.1 (70.45) 68.15+0.40
�0.35 (68.15)

⌦bh2 0.02247+0.00011
�0.000094 (0.02248) 0.02248+0.00014

�0.00016 (0.02251) 0.02247± 0.00012 (0.02246)

⌦ch2 0.11829± 0.00077 (0.1183) 0.1237+0.0039
�0.0044 (0.1278) 0.11830± 0.00084 (0.1183)

ns 0.9715± 0.0030 (0.9715) 0.9804± 0.0078 (0.9873) 0.9716± 0.0032 (0.9720)

log(1010As) 3.056+0.012
�0.013 (3.052) 3.064+0.013

�0.017 (3.058) 3.057± 0.014 (3.056)

⌧reio 0.0586+0.0060
�0.0068 (0.05654) 0.0574+0.0064

�0.0083 (0.05122) 0.0586± 0.0071 (0.05881)

rdh 100.50± 0.60 (100.5) 100.71± 0.70 (100.5) 100.47± 0.64 (100.5)

S8 0.8181± 0.0091 (0.8161) 0.829+0.013
�0.014 (0.8378) 0.8183± 0.0095 (0.8182)

�2

H0
17.0 6.3 (-10.7) 17.1 ( 0.1)

�2

Planck
1014.7 1017.1 ( 2.4) 1015.1 ( 0.4)

�2

ACT
240.4 234.4 (-6.0) 240.3 ( -0.2)

�2

data
2312.2 2297.9 (-14.3) 2312.5 ( 0.3)

Table 1. Mean and best-fit parameter values for the ⇤CDM, K-essence and Fang models, for the
baseline+ext dataset. Consistent parameters and �2 values have been suppressed.

Figure 10. fDE(z) for the K-essence model (left) and the Fang model (right). 1 and 2� confidences are

indicated by the dark and light blue regions, and the best-fit by the dashed line. The Fang model peaks way

earlier than our assumption of matter-radiation equality

at ` � 30, the low-` likelihood using the Commander component separation algorithm [37],
the low�` EE likelihood from the SimAll algorithm, and lensing [38]. We include the SH0ES
H0 measurement from [39] and high ` CMB data from Act DR4 [40].

5 Conclusion and discussion

In this paper we have taken seriously the prospect that the current Hubble tension is a
manifestation of new early universe physics, in particular an evolving scalar field which for a
short period of time, around the period of matter radiation equality could briefly enhance the
energy density of the universe, and by doing so increase the Hubble parameter beyond the
cmb derived value (H0 = 67.44±0.58 km s�1 Mpc�1) [6, 7, 33] and closer to that determined
by the SHOES team (H0 = 74.03 ± 1.42 km s�1 Mpc�1) [3, 4]. In doing so, we of course
recognise, that this may be overkill, the resolution may reside in the way the data is analysed
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H0 measurement from [39] and high ` CMB data from Act DR4 [40].

5 Conclusion and discussion

In this paper we have taken seriously the prospect that the current Hubble tension is a
manifestation of new early universe physics, in particular an evolving scalar field which for a
short period of time, around the period of matter radiation equality could briefly enhance the
energy density of the universe, and by doing so increase the Hubble parameter beyond the
cmb derived value (H0 = 67.44±0.58 km s�1 Mpc�1) [6, 7, 33] and closer to that determined
by the SHOES team (H0 = 74.03 ± 1.42 km s�1 Mpc�1) [3, 4]. In doing so, we of course
recognise, that this may be overkill, the resolution may reside in the way the data is analysed
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Dark Energy and the String Swampland [Agrawal et. al. 2018]

String Swampland [Vafa 2005]
[Credit: E. Palti 2018]

The class of theories that appear perfectly acceptable as low energy QFT 
but can not be in the Landscape of string theories at high energies.  
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Dark Energy and the String Swampland [Agrawal et. al. 2018]

They make use of 2 main criteria: 

1. The Swampland Distance Conjecture. Range traversed by a scalar 
field in field space is bounded by 

|��|
MPl

< � < O(1)

If go large distance D in field space, a tower of light modes appear with 
mass scale 

m ⇠ MPl exp(�↵D), ↵ ⇠ O(1)

motivated by difficulty in obtaining reliable deS vacua, and string 
constructions of scalar potentials.  

2. There is a lower bound on |r�V (�)|
V (�)

> c ⇠ O(1), when V > 0

which invalidates the effective action being used. 
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The constants are not well constrained yet. But if constraint 2 is 
accepted (which it isn’t yet by many), it would clearly rule out 

ΛCDM as the source of the current acceleration.  

Quintessence type models can work, though with model independent 
constraints of c < 0.6, c < 3.5 Δ. 

V (�) = V1e
�1�/MPl + V2e

�2�/MPl

�1 �
p
3, �2 = c = 0.6

For a range of initial conditions, evolves so that it initially scales with the 
background matter density and then at late times comes to dominate 

whilst satisfying criteria 1 and 2. In fact they find:  

[Barreiro, EC, Nunes 2000]

� � 1

3
c ⌦0

�

Early days but might lead to genuine new constraints on the nature of dark 
energy - still somewhat unclear how robust the bound is. 
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Quasars as Standard Candles ? [Risaliti & Lusso. Nat. Astron. 2019]

Developed a technique they argue allows quasars to be treated as std 
candles. Here of order 1600 quasars (yellow,blue) out to z~5. Inset is 

comparison to SN (cyan) showing good agreement to z~1.4 with dashed 
magenta line is ΛCDM with ΩM ~ 0.31±.05 - extrapolated out to z~5. 
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Evolving Dark Energy ?

V (�) = V1 exp(
p
2�/2) + V2 exp(��),

p
5 < � <

p
7.5

Early days - key is are quasars standard candles !

Ex:



41

Conclusions
1. Quintessence type approaches to the nature of dark energy and the current 

acceleration of the Universe provides alternative to Landscape - but does not 
solve the CCP. 

2. Need to screen this which leads to models such as axions, Higgs-dilatons, 
chameleons, non-canonical kinetic terms etc.. -- many of these have their 
own issues. 

3. Atoms are small enough that the chameleon or symmetron field can’t react to 
it quickly enough and they remain unscreened in high vacuum. 

4. Galaxy dynamics offer a probe of modified gravity (RAR curve) 

5. Higgs portal interactions provide a way of searching for fifth forces through 
FeynMG. 

6. Is the Hubble tension telling us something about dark energy or MG? Time 
will tell - maybe JWST or LIGO will tell us over the coming years ! 

7. Is the Swampland telling us something about dark energy? 

8. How can we go locally beyond SN1a ? Quasars ? 


