Modified Gravity in Two-Body Systems

Anne-Christine Davis, Cambridge

with Philippe Brax(CEA, Saclay), Scott Melville (Cambridge),
Khim Wong(CEA Saclay), David Benisty(Cambridge)
1809.09844; 1910.08831; 2011.01213; 2107.10841, 2212.03098, 2305.19977

Dark Energy: from Fundamental Theories to Observations

Outline

Introduction - Motivation, The Action and the approximations

Constructing the Effective Action a diagrammatic approach	Brax \& ACD 1809.09844; Brax, ACD \& Kuntz 1903.03842
Beyond the Ladder Approximation	ACD \& Melville 1910.08831
resuming the ladder and a new screening mechanism	
Spinning Binaries	Brax, ACD, Melville, Wong 2011.01213, 2107.10841
EFT, Gravity Probe B	
Pulsar Constraints	Benisty, Brax, ACD 2212.03098
Lens Thirring Effect	Benisty, Brax, ACD 2305.19977

Conclusions

Original Motivation was that it could potentially 'explain' dark energy. Despite our best efforts this is still, at best, an open question.

Modified Gravity theories allow one to test General Relativity against one of the simplest extensions over a variety of ranges. This could either constrain the model parameters or give a hint of new physics and where to look for it in detail.

We consider scalar-tensor gravity with the most general coupling to matter, containing both conformal and disformal couplings. This extends the programme of Damour and collaborators. For example Damour \& Deruelle Annales de l'IHP Physique Theorique 43 (1985) 107; Damour 2010.01641, Juli and Deruelle 1703.0536

The Action

$$
S=\int d^{4} x \sqrt{-g_{E}}\left(\frac{R_{E}}{16 \pi G_{N}}-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right)+S_{m}\left(\psi_{i}, g_{\mu \nu}\right)
$$

This is the action of scalar-tensor gravity. The scalar field is coupled to matter with the most general coupling containing a conformal and disformal coupling

$$
g_{\mu \nu}=A^{2}(\phi) g_{\mu \nu}^{E}+B^{2}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi \quad \text { Betensstein }
$$

with $\quad A(\phi)=e^{\beta \phi / m_{\mathrm{Pl}}} \quad$ and $\quad B(\phi, X)=\frac{1}{M^{4}}$

The Approximations
We work consistently to leading order in

$$
G_{N} \quad v^{2} \ll 1
$$

and in the conformal and disformal couplings

$$
\beta \quad 1 / M^{4}
$$

our work generalises that of Damour and collaborators

To proceed one uses Einstein and Klein-Gordon equations, which contains the conformal coupling to matter. The disformal coupling is added perturbatively

$$
\begin{array}{lr}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G_{N}\left(T_{\mu \nu}+T_{\mu \nu}^{\phi}\right) & T_{\mu \nu}^{\phi}=\partial_{\mu} \phi \partial_{\nu} \phi-\frac{(\partial \phi)^{2}}{2} g_{\mu \nu}^{E} . \\
\square \phi=-\beta \frac{T}{m_{\mathrm{Pl}}}+\frac{1}{M^{4}} D_{\mu} \partial_{\nu} \phi T^{\mu \nu} & \square \phi^{(0)}=-\beta \frac{T}{m_{\mathrm{Pl}}} \\
\phi=\phi^{(0)}+\delta \phi \quad & \\
\square \delta \phi-\frac{1}{M^{4}} D_{\mu} \partial_{\nu} \delta \phi T^{\mu \nu}=\frac{1}{M^{4}} D_{\mu} \partial_{\nu} \phi^{(0)} T^{\mu \nu} & \delta \phi=\sum_{n \geq 0} \delta \phi^{(n)}
\end{array}
$$

This gives the ladder approximation

The Two Body System

For two bodies, A and B we have
$\square \phi^{(0)}=-\beta \frac{T^{A}+T^{B}}{m_{\mathrm{Pl}}}$

$$
\phi^{(0)}=\phi_{A}^{(0)}+\phi_{B}^{(0)}
$$

diagrammatically

with the disformal vertex insertion.
this gives us the ladder approximation with each insertion
bringing in the energy-momentum tensor and a suppression of

$$
1 / M^{4}
$$

The Effective Action

In the centre of mass frame the effective Lagrangian is
$\mathcal{L}_{\text {eff }}=\frac{1}{2} \mu \vec{v}^{2}+\frac{G_{N} \mu \mathcal{M}\left(1+2 \beta^{2}\right)}{x}+\frac{G_{N} \mu \mathcal{M}}{2 x}\left(\left(3-2 \beta^{2}\right) \vec{v}^{2}+2\left(1+2 \beta^{2}\right) \nu \vec{v}^{2}\right)+\frac{\beta^{2} G_{N}\left(v_{\perp}^{2}-(\vec{v} \cdot \vec{n})^{2}\right)}{4 \pi} \frac{\mu \mathcal{M}^{2}}{x^{4} M^{4}}$
where we have
introduced the reduced
and total mass

$$
\mu=\frac{m_{A} m_{B}}{m_{A}+m_{B}} \quad \mathcal{M}=m_{A}+m_{B}
$$

$$
\nu=\frac{m_{A} m_{B}}{\left(m_{A}+m_{B}\right)^{2}}
$$

this is actually equivalent to having the effective metric as

$$
g_{00}^{\mathrm{eff}}=-\left(1-\frac{2 G_{N} \mathcal{M}\left(1+2 \beta^{2}\right)}{x}\right)
$$

$$
g_{i j}^{\mathrm{eff}}=\left(1+\frac{2 G_{N} \mathcal{M}\left(1-2 \beta^{2}\right)}{x}\right) \delta_{i j}+\frac{\beta^{2} G_{N}}{2 \pi} \frac{\mathcal{M}^{2}}{x^{4} M^{4}}\left(\delta_{i j}-2 n_{i} n_{j}\right)
$$

the conformal part is familiar and provides the exact, post Minkowski limit, ie leading order in G . here we include the disformal term as well.

Let us now consider the effect of a light body moving in the background of a heavier body. For example this could be a planet moving in orbit around the sun.

The effective metric is not the same as the metric followed by photons. The disformal coupling involves both perpendicular and parallel velocities whilst the metric for photons only involves parallel velocities. Thus the equivalence principle is violated between photons and matter. This could have an effect on the Shapiro time delay and the perihelion advance. In fact to this order the disformal coupling doesn't affect the Shapiro time delay, but does effect the perihelion advance, which is.
$\Delta \theta=2 \pi \frac{G_{N} m_{A}}{p}\left(\left(3-2 \beta^{2}\right)+5 \frac{\beta^{2} m_{A}}{2 \pi M^{4} p^{3}}\right) \quad p=a\left(1-e^{2}\right)$
so the perihelion advance of Mercury gives

$$
M \gtrsim 10^{-4} \mathrm{MeV}
$$

Resumming the Ladder Expansion

So far we have treated the disformal coupling perturbatively

$$
\square \phi^{0}=-\beta \frac{T}{m_{p l}} \quad \phi=\phi^{0}+\delta \phi
$$

which gives us

for two bodies

The ladder approximation breaks down when corrections are $\mathrm{O}(\mathbf{1})$
corrections from subsequent ladder diagrams become $\mathrm{O}(1)$ when

$$
r^{3} \sim \frac{m}{M^{4}}=: R_{V}^{3}
$$

and we define the ladder parameter as

$$
L \sim \frac{v^{2} R_{V}^{3}}{r^{3}}
$$

so the perturbative expansion is only valid for $\mathrm{L} \ll 1$, ie low velocity and large distances. Otherwise we need to resum the ladder expansion

Note L is very important as it marks the change from the pertubative to resummed regimes. For $L \gg 1$ the disformal effects are summed and become screened

In the ladder resummation regime we obtain the correction to the force

$$
\begin{aligned}
& \delta F_{\varphi 2}^{(c) r}=-\frac{\beta^{2}}{4 d a} \frac{R_{S_{2}}}{a} \frac{a^{4}}{R_{S_{1}} R_{V_{1}}^{3}}\left[\frac{c_{1}}{\rho}+\frac{1}{2} \rho+\frac{1}{3} \rho^{2}\right] \\
& \delta F_{\varphi 2}^{(d) r}= \frac{\beta^{2}}{48 d a} \frac{R_{S}}{a} \frac{a^{4}}{R_{S_{1}} R_{V_{1}}^{3}}\left[\frac{36 c_{1}^{2}}{\rho^{6}}-\frac{96 c_{1}^{2}}{\rho^{5}}+\frac{12 c_{1}\left(7 c_{1}+5\right)}{\rho^{4}}-\frac{24 c_{1}\left(c_{1}+5\right)}{\rho^{3}}+\frac{21-4 c_{1}}{\rho^{2}}\right. \\
& \quad+\frac{4\left(26 c_{1}-7\right)}{\rho}-5\left(8 c_{1}+7\right)-\frac{32 \rho^{3}}{3}+\frac{40 \rho^{2}}{3}+\frac{118 \rho}{3}
\end{aligned}
$$

where $\quad \rho=r(t) / a \quad$ a the semi-major axis and e the eccentricity

The conformal and disformal forces are of the same order and suppressed like $1 / L$ for $L \gg 1$

In this regime with $L \gg 1$ there is an efficient screening mechanism. This is for the two-body case and is distinct from Vainshtein screening

Precession of the planets due to ladder screening

Spin Effects

Jacobson, astro-ph/9905303, in a time dependent background a black hole can support scalar 'hair'. We,
(Melville, Wong, Brax, ACD) 2107.10841, used the EFT approach of Goldberger and Rothstein, hep-th/
0409156, to compute the effect of spinning bodies in scalar-tensor theories.
Model the inspiral phase by an EFT with point particles coupled to (g, ϕ)

$$
S_{\mathrm{eff}}=S_{\text {fields }}[g, \phi]+\sum_{\kappa=1}^{2} S_{\mathrm{pp}, \kappa}
$$

As this regime is perturbative, we can write

$$
S_{\text {fields }}[g, \phi]=\frac{1}{16 \pi} \int \sqrt{-g} \mathrm{~d}^{4} x\left(R-2(\partial \phi)^{2}+(\text { interaction terms })\right)
$$

Effective theory for the binary

$$
S_{\mathrm{eff}}=S_{\text {fields }}[g, \phi]+\sum_{k=1}^{2} S_{\mathrm{pp}, k}
$$

Nonrelativistic, weak-field expansion

Worldline EFT

$$
S=S_{\mathrm{fields}}[g, \phi]+\sum_{\kappa=1}^{2} S_{\mathrm{pp}, \kappa}\left[x_{\kappa}, S_{\kappa} ; g, \phi\right]
$$

$$
\begin{gathered}
\kappa=1 \\
\downarrow
\end{gathered}
$$

Perform a nonrelativistic, weak-field expansion and read off the Feynman rules

$$
\sim \frac{m^{2} \alpha^{2}}{r}\left[\frac{m \beta \Lambda^{2} \mathbf{v}^{2}}{r^{3}}\right] \frac{(\mathbf{n} \cdot \mathbf{v})^{2}}{\mathbf{v}^{2}}
$$

In nearly circular binaries, spin-orbit effects can be better at probing disformal interactions than purely orbital effects.

Orbital velocity \rightarrow

Orbital velocity \rightarrow

Two important pulsar events

- Hulse Taylor Pulsar PSR B1913+16.

Astrophysical Journal, 829:55 (10pp), 2016 September 20

Shapiro Gravitational Propagation Delay Parameters	
Damour \& Deruelle (1986) Parametrization	
s	$0.68_{-0.06}^{+0.10}$
$r(\mu \mathrm{~s})$	$9.6_{-3.5}^{+2.7}$

- The double pulsar PSR J0737-3039.

PHYSICAL REVIEW X 11, 041050

Orbital period, P_{b} (day)
Projected semimajor axis, x (s) Eccentricity (Kepler equation), e_{T} Epoch of periastron, T_{0} (MJD) Longitude of periastron, ω_{0} (deg) Periastron advance, $\dot{\omega}\left(\operatorname{deg} \mathrm{yr}^{-1}\right){ }^{\text {c }}$ Change of orbital period, \dot{P}_{b} Einstein delay amplitude, γ_{E} (ms) Logarithmic Shapiro shape, z_{s} Range of Shapiro delay, $r(\mu \mathrm{~s})$ NLO factor for signal prop., $q_{\text {NLO }}$ Relativistic deformation of orbit, δ_{θ} Change of proj. semimajor axis, \dot{x} Change of eccentricity, $\dot{e}_{T}\left(\mathrm{~s}^{-1}\right)$
0.102251559297 3(10)
1.415028 603(92)
$0.087777023(61)$
$55700.233017540(13)$ 204.753 686(47)
$16.899323(13)$
$-1.247920(78) \times 10^{-12}$
$0.384045(94)$ 9.65(15) 6.162(21)
1.15(13)
$13(13) \times 10^{-6}$ $8(7) \times 10^{-16}$ $3(6) \times 10^{-16}$

Dark Energy Interactions constraints

In general there are two effects to take into account for binaries - the geodesic effect and the Lens-Thirring effect

The geodesic effect arises from the curvature of space-time in general relativity whilst the Lens-

$$
\Omega_{d S}=\frac{3 G n_{b}}{2 a c^{2}\left(1-e^{2}\right)} \frac{m_{2}\left(4 m_{1}+3 m_{2}\right)}{\left(m_{1}+m_{2}\right)^{4 / 3}}
$$

Thirring Effect arises from the spin of the central body
where S is the spin, $n_{b}=2 \pi / P_{b}$ the orbital frequency

$$
\Omega_{F D}=\frac{3 G S}{2 a c^{2}\left(1-e^{2}\right)^{3 / 2}}
$$

To proceed take the spin evolution equation and from this the total precession, separate out the geodesic/de Sitter term and the Lens-Thirring/frame dragging term, including both the GR and modified gravity terms

Defining

$$
\stackrel{\imath}{\lambda}_{d S}:=\Delta \Omega_{\mathrm{dS}} / \Omega_{\mathrm{dS}}^{(G R)}
$$

$$
\begin{array}{ll}
\lambda_{d S}=-\frac{2 m_{1}}{3 m_{1}+4 m_{2}}\left[\beta^{2}-\epsilon_{\Lambda}\left(1+3 e^{2}+\frac{3}{8} e^{4}\right)\right] \\
\lambda_{F D}=\epsilon_{\Lambda} \Phi_{s} \frac{1+8 e^{2}+\frac{51}{8} e^{4}+\frac{3}{8} e^{6}}{1-e^{2}} \sin \psi & \epsilon_{\Lambda}=\frac{\left(\beta \cdot n_{b} / \Lambda\right)^{2}}{\left(1-e^{2}\right)^{3}}
\end{array}
$$

where $\Phi_{s}=G m_{s} /\left(a c^{2}\right) \quad$ is the potential of the companion body and ψ the angle between the spin vectors

We can now test and constrain against current and future experiments: GPB, GPS, GINGER, Pulsars

PSR J0737-3039

	β^{2}	$\Lambda(\mathrm{MeV})>$
Current	$(1.94 \pm 0.72) \cdot 10^{-5}$	1.62
Forecast	$(1.16 \pm 1.84) \cdot 10^{-7}$	2.1
future telescopes	$(0.99 \pm 1.53) \cdot 10^{-7}$	3.0

Summary

We have shown the effects of modified gravity on the dynamics of the two-body system, including both conformal and disformal couplings.

We have constrained the parameters using solar system constraints

We have shown how the ladder expansion can be resumed to uncover a new screening mechanism in the two-body case

We include spin producing constraints from Gravity
Probe B and pulsars. We have made predictions for the
Lens Thirring Effect which could be probed in future

