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Why Modified Gravity?

Original Motivation was that it could potentially ‘explain’ dark energy.
Despite our best efforts this is still, at best, an open question.

Modified Gravity theories allow one to test General Relativity
against one of the simplest extensions over a variety of
ranges. This could either constrain the model parameters or
give a hint of new physics and where to look for it in detail.

We consider scalar-tensor gravity with the most general coupling
to matter, containing both conformal and disformal couplings.
This extends the programme of Damour and collaborators. For

example Damour & Deruelle Annales de I'lHP Physique Theorique

43 (1985) 107; Damour 2010.01641, Juli and Deruelle 1703.0536



The Action

S = [ dtov=ge (1o~ 5007 = V() + Sn(vi g

This is the action of scalar-tensor gravity. The scalar field is coupled to matter
with the most general coupling containing a conformal and disformal coupling
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The Approximations

We work consistently to leading order in

G v? << 1

and in the conformal and disformal couplings

o 1/M*

our work generalises that of Damour and collaborators



To proceed one uses Einstein and Klein-Gordon equations, which contains the
conformal coupling to matter. The disformal coupling is added perturbatively
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This gives the ladder approximation



The Two Body System

For two bodies, A (0) — (O) _ (O> (O)
and B we have ¢ 6 mpi ¢ ¢A T ¢B

. , ro with the disformal vertex insertion.
diagrammatically , \

this gives us the ladder approximation with each insertion 1 / 7\ {4
bringing in the energy-momentum tensor and a suppression of



The Effective Action

In the centre of mass frame the effective Lagrangian is
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the conformal part is familiar and provides the exact, post Minkowski
limit, ie leading order in G. here we include the disformal term as well.



Let us now consider the effect of a light body moving in the background of a heavier
body. For example this could be a planet moving in orbit around the sun.

The effective metric is not the same as the metric followed by photons. The disformal coupling
involves both perpendicular and parallel velocities whilst the metric for photons only involves parallel
velocities. Thus the equivalence principle is violated between photons and matter. This could have an

effect on the Shapiro time delay and the perihelion advance. In fact to this order the disformal
coupling doesn’t affect the Shapiro time delay, but does effect the perihelion advance, which is.

B*m 4
27 M 4p3

A0 = 27 GNpmA ((3 —2B%) +5
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so the perihelion advance Mo 0_4 MeV

of Mercury gives



Resumming the Ladder Expansion Melville and ACD - 1910.08831

So far we have treated the ik 40
disformal coupling perturbatively ¢O — — 6 ¢ T ¢ _l_ 5¢

which gives us ¢(O) 7 ¢(1) 7 ¢(2)

for two bodies



The ladder approximation breaks down when corrections are O(1)

corrections from subsequent ladder T3 N m __. R3
diagrams become O(1) when M4 il 4
2
v R%/
and we define the ladder parameter as L ~

7“3
so the perturbative expansion is only valid for L <<1, ie low velocity and

large distances. Otherwise we need to resum the ladder expansion

Note L is very important as it marks the change from the pertubative to resummed
regimes. For L>>1 the disformal effects are summed and become screened






In the ladder resummation regime we obtain the correction to the force
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where P — T(t) / 0! a the semi-major axis and e the eccentricity

The conformal and disformal forces are of the same order and suppressed like 1/L for L>>1

In this regime with L>>1 there is an efficient screening mechanism. This
is for the two-body case and is distinct from Vainshtein screening
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Precession of the planets due to ladder screening
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Spin Effects

Jacobson, astro-ph/9905303, in a time dependent background a black hole can support scalar ‘hair’. We,
(Melville, Wong, Brax, ACD) 2107.10841, used the EFT approach of Goldberger and Rothstein, hep-th/
0400156, to compute the effect of spinning bodies in scalar-tensor theories.

Model the inspiral phase by an EFT with point particles coupled to (g, @)

Seff = Sﬁelds[gv ¢] 2 Spp,lc
As this regime is perturbative, we can write

Stedsl&> P = L J, /—g d*x (R — 2(0¢))* + (interaction terms))

167 I I I

GR Massless Not needed at
scalar leading PN order



Effective theory for the binary

2
Seff = Sﬁelds[89 ¢] + Z Spp,K
k=1

Nonrelativistic, weak-field expansion

Feynman rules




Covariant theory

S = Sﬁelds [g, Qb] + Smatter [g(ga ¢)]

Y

Worldline EFT

2
S = Sﬁelds[g, gb] + Z Spp,/{[xli7 Sli;ga ¢]

k=1

Y

Perform a nonrelativistic, weak-field expansion
and read off the Feynman rules
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Orbital

Spin-orbit

Two-body potential

Expansion in A% —
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In nearly circular binaries, spin-orbit effects can be better at
probing [s[5ieJi1iE linteractions than purely orbital effects.



Self-gravity —

Solar System tests

Binary pulsars

Gravitational waves

Orbital velocity —




Self-gravity —

Solar System tests
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Solar System constraints I Spin-orbit precession | Perihelion precession
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T, (MID) 52144.90097849(3)

T " X = apsini (s) 2.341776(2)
WO Important pulsar events
P, (d) 0.322997448918(3)
wo (deg) 202.54450(8)
(@) (degyr™) 4.226585(4)
7y (ms) 0.004307(4)
By —2.423(1) x 10712

* Hulse Taylor Pulsar PSR B1913+16. ot 102

¢obs (571 0.0006(7) x 10~
Astrophysical Journal, 829:55 (10pp), 2016 September 20

Shapiro Gravitational Propagation Delay Parameters

Damour & Deruelle (1986) Parametrization

S 0.68Z0'06
ro(us) 9.6233
* The double pulsar PSR J0737-3039.
Orbital period, P}, (day) 0.102 251 559 297 3(10)
PHYSICAL REVIEW X 11, 041050  Projected semimajor axis, x (s) 1.415 028 603(92)
Eccentricity (Kepler equation), ey 0.087 777 023(61)
(20 p) 1) Epoch of periastron, T, (MJD) 55700.233 017 540(13)
Longitude of periastron, w, (deg) 204.753 686(47)
Periastron advance, @ (degyr=!) 16.899 323(13)
Change of orbital period, P, —1.247920(78) x 1012
Einstein delay amplitude, yg (ms) 0.384 045(94)
Logarithmic Shapiro shape, z; 9.65(15)
Range of Shapiro delay, r (us) 6.162(21)
NLO factor for signal prop., gnio 1.15(13)
Relativistic deformation of orbit, 9, 13(13) x107°
Change of proj. semimajor axis, x 8(7)x 10710

Change of eccentricity, ¢ (s™!) 3(6) x 10710




Dark Energy Interactions constraints

Upper Bound on Conformal Coupling
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In general there are two effects to take into account for
binaries - the geodesic effect and the Lens-Thirring effect

The geodesic effect arises from the curvature of Oyq = 3Gny  ma (4my + 3my)

> (1 _ -2 4/3
space-time in general relativity whilst the Lens- 2a¢2 (1 = €%) (my +my)*/?
Thirring Effect arises from the spin of the central body

3GS

2ac? (1 — 62)3/2’

(Qpp =

where S is the spin, n, = 27/ P, the orbital frequency

To proceed take the spin evolution equation and from this the total precession,
separate out the geodesic/de Sitter term and the Lens-Thirring/frame dragging
term, including both the GR and modified gravity terms



Defining AJS = AQdS/QégR)

2m1 | 9 9 3 4 )

ds Smr 4y _5 eA( + 3e —|—8€ >
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where &, = Gm,/ ( q 02) is the potential of the companion body and
T 1) the angle between the spin vectors

We can now test and constrain against current and future experiments: GPB, GPS, GINGER, Pulsars



Il Gravity Probe B
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Summary

We have shown the effects of modified gravity on the dynamics of the
two-body system, including both conformal and disformal couplings.

We have constrained the parameters using solar system constraints

We have shown how the ladder expansion can be resumed to
uncover a new screening mechanism in the two-body case

We include spin producing constraints from Gravity
Probe B and pulsars. We have made predictions for the
Lens Thirring Effect which could be probed in future



