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The cosmological constant problem(s)

1 naive estimates of the vacuum energy in QFT, inserted in
the Einstein equations, give values of the curvature that far
exceed observation

2 in order to have small vacuum energy now, the vacuum
energy before the electroweak/strong phase transition had
to be highly fine tuned
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Reformulations of GR

What is the gauge group of gravity?
not a physically meaningful question.
Can recast the theory in various forms with smaller or larger
gauge group.
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Five formulations of GR: EG

SEG(g) = ZN

∫
d4x

√
|g|R where ZN =

1
16πG

.

Invariant under DiffM
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Five formulations of GR: DG

Apply Stückelberg trick to EG.

SDG(g, χ) = SEG

(
1

ZN
χ2gµν

)
=

∫
d4x

√
|g|
[
χ2R − 6χ∇2χ

]

Invariant under Diff ⋉ Weyl

gµν → Ω2gµν , χ→ Ω−1χ .
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Five formulations of GR: unimodular

Under a diffeomorphism,

√
g′ = det

∣∣∣∣ ∂x
∂x ′

∣∣∣∣√g

thus we can find a diffeomorphism such that√
|g| = ω

(in particular ω = 1).

SUG(g) = ZN

∫
d4x ωR .

Invariant under SDiffM
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Five formulations of GR: UD

SUD(g, χ) =
∫

d4x ω
[
χ2R − 6χ∇2χ

]
.

Invariant under S(Diff ⋉ Weyl) = Diff ∗.
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Five formulations of GR: WTDiff

SX (gµν) = SEG

((
|g|
ω2

)−1/4

gµν

)

= ZN

∫
d4x |g|

1
4 ω

1
2

[
R +

3
32

(
|g|−1∇|g| − 2ω−1∇ω

)2 ]
Invariant under SDiffM ⋉ Weyl

Linearized form

1
4
∂µhαβ∂

µhαβ − 1
2
∂µhµα∂νhν

α +
1
2
∂µhµα∂αh − 3

32
∂µh∂µh

E. Alvarez, D. Blas, J. Garriga and E. Verdaguer, Transverse Fierz-Pauli
symmetry, Nucl. Phys. B 756 (2006) 148-170, arXiv: hep-th/0606019 [hep-th]
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Five formulations of GR: summary

DG
(g, χ); Diff ⋉ Weyl
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χ = χ0
√

|g| = ωχ = χ0

(
|g|
ω2

)− 1
8

UDEG WTDiff
(gU , χ); Diff ∗(g); Diff (g); SDiff ⋉ Weyl
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√
|g| = ω χ = χ0

√
|g| = ω

UG
(gU); SDiff
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Hamiltonian formulation

DG EG UG
fields qij ,Ni ,N,χ qij ,Ni ,N qij ,Ni
momenta pij ,P i ,P,π pij ,P i ,P pij ,P i

# can. variables 22 20 18
primary constr. P i , P, C P i , P P i

secondary constr. Hi ,H Hi ,H Hi ,HΛ

# 1st cl. constr. 9 8 7
# canonical d.o.f. 4 4 4

R. de Leon Ardon, S. Gielen, R.P, Gravity with more or less gauging, C.Q.G.
35 (2018) 195009, arXiv:1805.11626 [gr-qc]



(Gauge) equivalent formulations of gravity Classical EG vs UG Quantum EG vs UG

Which is to be preferred?

1. extending the gauge group is useful to recognize
equivalences between different formulations

2. in DG certain singular configurations can be interpreted as
gauge artifacts, e.g. I. Bars, S.H. Chen, P. Steinhardt and N. Turok,
Antigravity and the big bang/big crunch transition, Phys. Lett. B715
(2012) 278

3. suggest routes to unification
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Which is to be preferred?

Gauge invariances needed in order to deal with local d.o.f.
UG has the smallest gauge group compatible with locality.

Traceless fluctuation → simpler Feynman rules

The metric is a nonlinear field with values in GL(4)/O(1,3) and
GR can be treated by methods of EFT. Analogy with chiral
models with U ∈ SU(2)L×SU(2)R

SU(2)V
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EFT of gravity

Chiral action

S =

∫
dx
[

f 2
π

4
tr(U−1∂U)2 + ℓ1tr((U−1∂U)2)2 + ℓ2tr((U−1∂U)2)2 + O(∂6)

]

Gravitational action

S =

∫
dx

√
g
[
2m2

PΛ + m2
PR + ℓ1RµνρσRµνρσ + ℓ2RµνRµν + ℓ3R2 + O(∂6)

]
R ∼ ΓΓ ∼ (g−1∂g)2

Differences disappear for unimodular gravity.
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Unimodularity as gauge fixing

√
|g| = ω

is a gauge condition breaking Diff to SDiff .

It removes one d.o.f. per spacetime point
Almost all of these are unphysical

However ∫
d4x

√
|g| =

∫
d4xω

is a physical statement.

UG is EG with fixed total volume.
EG and UG differ by ONE physical d.o.f.
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General action

SEG = Sg
EG + Sm

EG
an arbitrary Diff -invariant action for gravity and matter, where

Sg
EG(g) =

∫
ddx

√
|g| Lg(g) and Sm

EG(ψ,g) =
∫

ddx
√
|g| Lm(ψ,g)

SUG = Sg
UG + Sm

UG

Sg
UG(g) =

∫
ddx ωLg(g) ; Sm

UG(ψ,g) =
∫

ddx ωLm(ψ,g) .
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EOM

In varying SUG one must impose

0 = δ
√

|g| ≡ 1
2

gµνδgµν .

This leads to the tracefree equations

−Ẽµν +
1
d

gµνẼ =
1
2

(
T̃µν − 1

d
gµν T̃

)
,

where

Ẽαβ =
1
ω

δSg
UG

δgαβ
and T̃αβ =

2
ω

δSm
UG

δgαβ

is a symmetric but not conserved energy-momentum tensor.
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The rhs of the EOM

Under and infinitesimal diffeomorphism ϵµ

δ
√

g =
√

g∇µϵ
µ

So, the group SDiff is generated by transverse vectorfields:

∇µvµ = 0 .

From the SDiff -invariance of Sm
UG,

0 =

∫
d4x

δSm
UG

δgµν
δgµν =

∫
d4xT̃µν∇µϵν = −

∫
d4x∇µT̃µνϵν

there follows
∇µT̃µν = ∇νΣ ,

where Σ is some scalar field.
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The rhs of the EOM

What is Σ? For a scalar

T̃µν = ∇µϕ∇νϕ

Using the eom (and the Bianchi identity) one finds

∇µT̃µν = −∇νLm .

The term coming from the variation of
√
|g| is missing, and this

term is proportional to the Lagrangian density. We will therefore
define an “improved” symmetric, conserved energy-momentum
tensor

Tµν = T̃µν + gµνLm .

This is just the usual energy-momentum tensor used in GR:

Tµν =
2√
|g|

δSm
EG

δgµν
.
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The rhs of the EOM

Since T̃µν and Tµν have the same tracefree part, we can
replace T̃µν by Tµν in the tracefree eom:

−Ẽµν +
1
d

gµνẼ =
1
2

(
Tµν − 1

d
gµνT

)
.
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The lhs of the EOM

Diff -invariance of Sg
EG implies the differential identity

∇µẼµν +
1
2
∇νLg = 0 .

Acting with ∇µ on the EOM and using this we obtain

∇ν

(
1
2
Lg +

1
d

Ẽ +
1

2d
T
)

= 0 .

1
2
Lg +

1
d

Ẽ +
1

2d
T = ZNΛ

where Λ is an arbitrary constant of integration.

−Ẽµν − 1
2

gµνLg + ZNΛgµν =
1
2

Tµν .

This is the EOM of SEG, except for the Λ term.
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Vacuum energy does not gravitate

A cosmological term in the UG action is metric-independent
and does not affect the EOM.
The cosmological term in the EOM is an integration constant,
unrelated to the vacuum energy.
First cosmological constant problem is solved.
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Inflation

Apparent issue for inflation.
Whereas a constant vacuum energy does not affect the EOM, a
change in the vacuum energy will.
G.F.R. Ellis,The tracefree EInstein equations and inflation, arXiv: 1306.3021
[gr-qc]
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Phase transitions

Likewise if the vacuum energy changes due to a phase
transition, this is felt by the gravitational field.
Thus if we fix the integration constant to fit the cc seen today, its
value before the phase transition had to be highly fine tuned.
The second cosmological constant problem is unsolved.
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Quantum questions

Can we maintain these equivalences in the quantum theory?

Conflicting statements in the literature.

R. de León Ardón, N. Ohta and R. P., “Path integral of unimodular gravity,”
Phys. Rev. D 97 (2018) no.2, 026007 arXiv:1710.02457 [gr-qc] ,

R. P., “Unimodular quantum gravity and the cosmological constant,” Found.
Phys. 48 (2018) no.10, 1364-1379, arXiv:1712.09903 [gr-qc] ,

G.P. de Brito, O. Melichev, R.P. and A.D. Pereira, “Can quantum fluctuations
differentiate between standard and unimodular gravity?,” JHEP 12 (2021),
090, arXiv:2105.13886 [gr-qc] .
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York variables

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ +

(
∇̄µ∇̄ν −

1
d

ḡµν∇̄2
)
σ +

1
d

ḡµνh ,

∇̄µhTT
µν = 0 , ḡµνhTT

µν = 0 , ∇̄µξµ = 0 , h = ḡµνhµν .

J1 = det

(
∆L1 −

2R̄
d

)1/2

det (∆L0)
1/2 det

(
∆L0 −

R̄
d − 1

)1/2

∆L0χ = −∇̄2χ,

∆L1Aµ = −∇̄2Aµ + R̄µ
ρAρ,

∆L2hµν = −∇̄2hµν + R̄µ
ρhρν + R̄ν

ρhµρ − R̄µρνσhρσ − R̄µρνσhσρ .
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Transformations under Diff

δhµν = ∇̄µϵν + ∇̄νϵµ

ϵµ = ϵTµ + ∇̄µϕ ; ∇̄µϵ
Tµ = 0 .

δϵT ξµ = ϵTµ ; δϕh = −2∆L0ϕ ; δϕσ = 2ϕ ,

hTT
µν and s = h +∆L0σ are invariant.

ξµ and ψ =
((d−1)∆L0−R̄)σ+βh

(d−1−β)∆L0−R̄
are gauge d.o.f.
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One-loop EG

S =
ZN

2

∫
ddx

√
ḡ

{
1
2

hTT
µν

(
∆L2 −

2R̄
d

)
hTTµν

−(d − 1)(d − 2)
2d2 s

(
∆L0 −

R̄
d − 1

)
s − d − 2

4d
Eh2

}
.

where EOM implies

0 = E ≡ R̄ − 2dΛ
d − 2
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Gauge fixing

Fµ = ∇̄ρhρ
µ − β + 1

d
∇̄µh

= −
(
∆L1 −

2R̄
d

)
ξµ − d − 1 − β

d
∇µ

(
∆L0 −

R̄
d − 1 − β

)
ψ

SGF = =
ZN

2α

∫
ddx

√
ḡ ḡµνFµFν

=
ZN

2α

∫
ddx

√
ḡ

[
ξµ

(
∆L1 −

2R̄
d

)2

ξµ

+
(d − 1 − β)2

d2 ψ∆L0

(
∆L0 −

R̄
d − 1 − β

)2

ψ

]
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Ghosts

Cν = CT
ν +∇ν

1√
−∇̄2

CL

Sgh =

∫
ddx

√
ḡ
[
C̄Tµ

(
∆L1 −

2R̄
d

)
CT
µ

+2
d − 1 − β

d
C̄L
(
∆L0 −

R̄
d − 1 − β

)
CL
]
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1-loop EG with cosmological term

Z (1)
EG (ḡ) = e−S(ḡ)

∫
(dϵ)

Det1
(
∆L1 − 2R̄

d

)1/2

Det2
(
∆L2 − 2R̄

d

)1/2

VDiff =

∫
(dϵ)

on shell R̄ = 2dΛ
d−2
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1-loop EG with cosmological term

Γ(1)(ḡ) = S(ḡ) +
1
2

Tr log
(
∆L2 −

2R̄
d

)
− 1

2
Tr log

(
∆L1 −

2R̄
d

)

Γlog(ḡ) = − 1
2(4π)2

∫
d4x

√
ḡ log

(
Λ2

µ2

)(
53
45

R̄µνρσR̄µνρσ − 29
40

R̄2
)

S.M. Christensen, M.J. Duff Nucl. Phys. B170 (1980) 480-506
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Quantum UG

Usual linear splitting gµν = ḡµν + hµν does not fit well with
unimodularity condition.
Use instead exponential splitting:

gµν = ḡµρ

(
eX
)ρ

ν

where det ḡ = ω and X ρ
ν = ḡρσhσν .

Symmetric in spite of appearance.
Respects nonlinear structure.
Can use York decomposition on hµν as before.
On shell results same for EG.
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Gauge fixing for SDiff

SDiff is generated by transverse vector fields

∇̄µϵ
µ = 0

Fµ = Tµν∇̄ρhρν = −
(
∆L1 −

2R̄
d

)
ξµ

where
Tµ

ν = δµν − ∇̄µ 1
∇̄2 ∇̄ν

SGF =
ZN

2α

∫
ddx ωFµTµνFν =

ZN

2α

∫
ddx ω ξµ

(
−∇̄2 − R̄

d

)2

ξµ

Sgh =

∫
ddx ω C̄T

µ

(
−∇̄2 − R̄

d

)
CµT
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The one-loop partition function of unimodular gravity is

Z (1)
UG = e−S(ḡ)

(∫
(dϵT )

) Det1
(
∆L1 − 2R̄

d

)1/2

Det2
(
∆L2 − 2R̄

d

)1/2
Det∆L

1/2
0



(Gauge) equivalent formulations of gravity Classical EG vs UG Quantum EG vs UG

Volume of SDiff

(dϵ) = (dϵT )(dϕ)Det∆L
1/2
0

Since δϕh = −2∆L0ϕ, the measure on Q = Diff/SDiff is

(dh) = (dϕ)Det∆L0 .

Thus

VDiff =

∫
(dϵ) =

∫
(dϵT ) det∆L

−1/2
0

∫
(dϕ) det∆L0 = VSDiff VQ ,

where
VSDiff =

∫
(dϵT )Det∆L

−1/2
0



(Gauge) equivalent formulations of gravity Classical EG vs UG Quantum EG vs UG

Alternatively

VSDiff =

∫
(dϵ)δ(∇̄µϵµ)

=

∫
(dϵT )(dϕ)Det∆L

1/2
0 δ(∆L0ϕ)

=

∫
(dϵT )Det∆L

−1/2
0
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In conclusion

Z (1)
UG = e−S(ḡ)VSDiff

Det1
(
∆L1 − 2R̄

d

)1/2

Det2
(
∆L2 − 2R̄

d

)1/2

and

Γ
(1)
UG(g) = Γ

(1)
EG(g)

∣∣
det g=ω

+ constant
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General path integral

Two-step gauge fixing in EG leads to

ZEG = ZUG × constant

equivalence extends (formally) to all orders in perturbation
theory
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Conclusions

Equivalence between various formulations of GR can be
maintained at one loop.
UG interesting because of different role of vacuum energy.
This extends to quantum UG.
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