

Tracing the cosmic expansion using **Type Ia Supernovae**

Maria Vincenzi, Dillon Brout, Dan Scolnic, the *Pantheon+ team* and many others

LNF - Sept 13th, 2023

Very homogeneous <u>intrinsic brightness at peak</u> (<10% scatter) after **several empirical** corrections.

Recent Results from SH0ES and Pantheon+ To address the community and achieve 1km/s/Mpc uncertainty

H₀: The Cosmic Distance Ladder Method Tells us the <u>Current</u> Expansion Rate

Riess,+21

H₀: The Cosmic Distance Ladder Method Tells us the <u>Current</u> Expansion Rate

Riess,+21

- Recalibrated 18 surveys, 25 systems, 105 filters
- SN calibrators from $19 \rightarrow 42$ and complete at z<0.01

The Pantheon+ Compilation of SNe

- 1701 Light-Curves of 1550 unique
 SNe from 0.001<z<2.3
- Recalibrated 18 surveys, 25 systems,
 105 filters
- More than doubles SN calibrators from $19 \rightarrow 42$ and complete at z<0.01
- Now have an average of 2
 photometric systems for each SN that
 is in a cepheid host (78 light curves in
 42 hosts)

Scolnic et al 2022

H_o: SH0ES reaches $>5\sigma$

The Robustness of SNe in the Distance ladder:

The Robustness of SNe in the Distance ladder:

The Robustness of SNe in the Distance ladder:

The Robustness of SNe in the Distance ladder: Is it calibration?

If all SN surveys can have a *residual* calibration error (beyond nominal expectation)... How could these impact H0, w?

 $\mathbb{Z}^{\mathbb{C}}$

Miscalibrated inter-survey systematics \rightarrow H0 uncertainty no larger than 0.2 km/s/Mpc."

0.410.0 -0.41Nominal Error -0.81**Residual Error** -1.2 -0.58 0.0 0.58 1.2 $\Delta H_0 \ (\mathrm{km \ s^{-1} \ Mpc^{-1}})$

Note that using only CSP in Hubble flow can cause a -1.1km/s/Mpc bias in H0.

Brownsberger et al. 2023

The Robustness of SNe in the Distance ladder: <u>Is it dust?</u>

Pantheon+ marginalizes over **dust variation** at a population level. \rightarrow H0 uncertainty related to SN Ia dust modelling no larger than 0.4 km/s/Mpc.

Popovic et al 2021, Meldorf et al 2022/2023

The Robustness of SNe in the Distance ladder: Is it dust?

Pantheon+ marginalizes over **dust variation** at a population level. \rightarrow H0 uncertainty related to SN Ia dust modelling **no larger than 0.25 km/s/Mpc**.

Independent work by the BayeSN team (*Mandel*+). Near-Infrared+Optical SNIa can get dust fits for each SN/Host individually \rightarrow H0=75!

> Popovic et al 2021, Meldorf et al 2022/2023

The Robustness of SNe in the Distance ladder: <u>Is it age?</u>

In Pantheon+ (and Riess et al 2016), we select only Hubble flow SNe found in star forming environments \rightarrow consistent with calibrators.

Pantheon+ find no evidence for any residual brightness step related to SN environment/age.

In the end, the SNe comprise less than $\frac{1}{3}$ of the H0 error budget.

Bottom line: It's hard to get below 72.5 without throwing out data...

Pantheon+ Hubble diagram for **Dark Energy** *w* measurements

Brout et al 2022

- Incorporates over 115 sources of systematic uncertainty *and not dominated by systematics!*

- Incorporates over 115 sources of systematic uncertainty *and not dominated by systematics!*

- Figure of merit 2x better than Pantheon (2018)

- Incorporates over 115 sources of systematic uncertainty *and not dominated by systematics!*
- Figure of merit 2x better than Pantheon (2018)
- Consistent with w=-1 (ACDM)

- Incorporates over 115 sources of systematic uncertainty *and not dominated by systematics!*
- Figure of merit 2x better than Pantheon (2018)
- Consistent with w=-1 (ACDM)
- Data and likelihoods available publicly and now widely used.

- Incorporates over 115 sources of systematic uncertainty *and not dominated by systematics!*
- Figure of merit 2x better than Pantheon (2018)
- Consistent with w=-1 (ACDM)
- Data and likelihoods available publicly and now widely used.
- Pantheon+ SNe provide one of the best constraint on <u>evolving dark energy</u> models (consistent with zero).

SN Only

$$w_a = -0.1^{+0.9}_{-2.0}$$
SN+Planck+BAO
 $w_a = -0.65^{+0.28}_{-0.32}$

Brout et al 2022

SNe Ia are used for Hubble Constant H₀ and Dark Energy w

SNe Ia are used for Hubble Constant H₀ and Dark Energy w

Vincenzi et al in prep.

Vincenzi et al in prep.

- 1600 new high-z SNe
- x4 SNe at redshifts z>0.4
- new way of collecting SN Ia cosmological samples → no spectroscopic follow-up but machine learning

The DES Collaboration, in prep.

- 1600 new high-z SNe - x4 SNe at redshifts z > 0.4- new way of collecting SN Ia cosmological samples \rightarrow no spectroscopic follow-up but machine learning - Top systematics: photometric calibration and dust/SN astrophys. - Consistent with $w=-1(\Lambda CDM)$ SN data suggests ΛCDM is working pretty well across 11 billion years of cosmic history!

The DES Collaboration, in prep.

Dust models: further testing of implemented in Pantheon+ (everything works fairly well!)

For the first time, we implemented a model of **SN age.** If there's a "age" step, it's <0.04 mag (i.e. it doesn't explain the tension, and in P+ we are only considering star-forming hosts anyway)

SKIP: DES has also been used to measure H0

Combining SNe with BAO and the early universe constraint on sound horizon r_s

 $H_0 = 67.77 + -1.30 \text{ km/s/Mpc}$

(First H0 inverse distance ladder systematic error budget.)

Macaulay et al 2018

Euclid: solving the dust mystery after 20 years?

Bailey, Vincenzi et al 2022

Euclid: solving the dust mystery after 20 years?

Disentangle extrinsic dust and intrinsic properties

Bailey, Vincenzi et al 2022

Euclid: solving the dust mystery after 20 years?

Disentangle *extrinsic dust* and *intrinsic properties*

~3700 SN Ia lightcurves with good optical and NIR data from Rubin and Euclid.

We will be able to determine with 4σ confidence whether *extrinsic dust extinction* is largely the cause of SN Ia intrinsic scatter.

Bailey, Vincenzi et al 2022

Where are SN Ia cosmological experiments going next?

Key Info on Rubin:

- 18,000 sq. deg. (DESx600)
- 10 years survey

1.2 million SNe Ia lightcurves for cosmology...but we need redshifts!

Key Info on Rubin:

- 18,000 sq. deg. (DESx600)
- 10 years survey

1.2 million SNe Ia lightcurves for cosmology...but we need redshifts!

Key Info on 4MOST/TiDES:

- On 4MOST, 2400-fibre spectrograph
- South Hemisphere, like Rubin!

The *only* spectroscopic follow-up program currently planned for Rubin!

Spectroscopy is needed for:

- Redshifts
- Live transient spectroscopy

25k SN Ia spectra + 30k SN host redshifts

Frohmaier, Vincenzi in prep.

25k SN Ia spectra + 30k SN host redshifts

Frohmaier, Vincenzi in prep.

Improve understanding of SN systematics...

- Select only sub-samples of SN hosts/environment and test different progenitor scenarios
- Use spectroscopy to constrain improve standardization

25k SN Ia spectra + 30k SN host redshifts

Frohmaier, Vincenzi in prep.

Improve understanding of SN systematics...

- Select only sub-samples of SN hosts/environment and test different progenitor scenarios
- Use spectroscopy to constrain improve standardization

Push cosmological measurements...

- Test a wide range of **Dark Energy** Equation of State models across 11 Gyr
- A new way of testing GR and **ACDM** using SN Ia pec. velocities

Testing GR and ΛCDM with SN Ia test it: Constraining the growth rate of structure using SNe Ia peculiar velocities

Testing GR and ACDM with SN Ia test it: Constraining the growth rate of structure using SNe Ia peculiar velocities

Pec Velocities

Testing GR and Λ CDM with SN Ia test it: Constraining the growth rate of structure using SNe Ia peculiar velocities

Adapted from Carreres et al 2023

MV, Howlett, Frohmaier et al. (in prep.)

Where are SN Ia cosmological experiments going next?

Roman: pushing SN Ia cosmology to redshift z~3

As Euclid, Roman is also a NIR space-telescope, with focus on transient science.

Roman: pushing SN Ia cosmology to redshift z~3

As Euclid, Roman is also a NIR space-telescope, with focus on transient science.

Rose, MV et al. in prep.