euclid

Constraining Dark Energy and Modified Gravity with Euclid

Martin Kunz University of Geneva

for the Euclid Consortium

- Why study Dark Energy?
- How to model Dark Energy for observations?
- Current and future (Euclid) constraints on 'Dark Energy'

The cosmological constant

Physics Nobel prize 2011:

"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

- Λ : w = -1 < -1/3 \rightarrow expansion accelerates
- Λ is unique natural extension (Lovelock)
- Data is consistent with Λ

why look elsewhere?

- Test **all** assumptions (goes beyond Λ!)
- Λ has problems (coincidence, naturalness)
- Early universe seems to have dynamical DE period
- And of course ...

... we promised ESA!

Table 1: Euclid Primary Science Objectives - see RD10 for a full description.

Sector	Euclid Targets
Dork Energy	 Measure the cosmic expansion history to better than 10% for several redshift bins from z = 0.7 to z = 2. Look for deviations from w = 1 indicating a dynamical dark energy.
Dark Energy	 Even for deviations from w = −1, indicating a dynamical dark energy. Euclid <i>alone</i> to give FoM_{DE}≥400 (roughly corresponding to 1-sigma errors on w_p, & w_a of 0.02 and 0.1 respectively)
Test of Gravity	 Measure the growth index, γ, to a precision better than 0.02 Measure the growth rate to better than 0.05 for several redshift bins between z = 0.5 and z = 2 Separately constrain the two relativistic potentials φ and ψ Test the cosmological principle
Dark Matter	 Detect dark matter halos on a mass scale between 10⁸ and >10¹⁵ M_{Sun} Measure the dark matter mass profiles on cluster and galactic scales. Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy with an accuracy of a few hundredths of an eV
Initial Conditions	 Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ₈ and n_s to 0.01. For extended models, improve constraints on n_s and α with respect to Planck alone by a factor 2. Measure the non-Gaussianity parameter f_{NL} for local-type models with an error better than ± 2.

How to model Dark Energy?

more physical

Phenomenology of the Dark Side

Phenomenology of the Dark Side

Metric phenomenological parameters

(e.g. Amendola et al, arXiv:0704.2421)

 $ds^{2} = -(1 + 2\Psi)c^{2} dt^{2} + a^{2}(t)(1 - 2\Phi)\delta_{ii} dx^{i} dx^{j}$ characterize deviation of metric from reference (like PPN but in a cosmological context) \rightarrow Geometry instead of fluid properties Light deflection (lensing) : $\nabla_{\perp} (\Phi + \Psi)$ (of course there Acceleration : $\nabla \Psi$ are many other (RSD) observations) $-k^2\Psi = \frac{4\pi\,G_{\rm N}}{c^2}\,a^2\mu(a,k)\Big[\bar\rho\Delta + 3\left(\bar\rho + \bar p/c^2\right)\sigma\Big]\,, \label{eq:phi}$ Alternatively replace one by slip, an observable and 'MG'
$$\begin{split} -k^2 \left(\Phi + \Psi \right) &= \frac{8\pi G_{\rm N}}{c^2} \, a^2 \Big\{ \Sigma(a,k) \Big[\bar{\rho} \Delta + 3 \left(\bar{\rho} + \bar{p}/c^2 \right) \sigma \Big] \\ &- \frac{3}{2} \mu(a,k) \left(\bar{\rho} + \bar{p}/c^2 \right) \sigma \Big\}, \end{split}$$
diagnostic : $\eta = \Phi/\Psi$ $\Sigma = \frac{1}{2}\mu(1+\eta)$

Action-based models

There is a huge number of possible models (theorists are very inventive), e.g.

• Quintessence ("Dark energy") [Wetterich, Ratra & Peebles 1988)

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R - \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi + V \right] + S_{\text{matter}}[g]$$

• K-essence: more general clustering (cs2≠1) [Armendariz-Picon et al. 2000]

$$\mathcal{L}_{\phi} = \sqrt{-g} K(\phi, X) \qquad X = \frac{1}{2} (\nabla \phi)^2$$

• f(R): "modified gravity" [Weyl ca 1918?] – scale-dependent clustering, gravitational slip

 $\mathcal{L} = \sqrt{-g} f(R)$

• Jordan-Brans-Dicke [Brans, Dicke 1961]

$$\mathcal{L} = \frac{1}{16\pi} \sqrt{-g} \left[\phi R - \frac{\omega(\phi)}{\phi} \nabla_{\mu} \phi \nabla^{\mu} \phi - 2\Lambda(\phi) \right] + \mathcal{L}_m(\Psi, g_{\mu\nu})$$

• Many more (Horndeski & EFT, DGP & other extra dimensions, bigravity & massive gravity, vectors, ...)

Phenomenology of DE/MG : f(R)

 $df/dR = f_R$ satisfies a field equation and can be considered as a 'scalaron'

$$\Box f_R = \frac{1}{3} \left(R + 2f - Rf_R \right) - \frac{\kappa^2}{3} (\rho - 3P) \equiv \frac{\partial V_{\text{eff}}}{\partial f_R}$$

$$m_{f_R}^2 \equiv rac{\partial^2 V_{ ext{eff}}}{\partial f_R^2} = rac{1}{3} \left[rac{1+f_R}{f_{RR}} - R
ight] \quad rac{ ext{t}}{ ext{a}}$$

the massive scalaron mediates a 5th force at short distances (Yukawa-type potential)

→ scale dependence: $\lambda >> \lambda_{c}$: $G_{eff} \approx G/F$, $\Phi \approx \Psi$; $F = 1 + f_{R}$

 $λ << λ_c$: G_{eff} ≅ 4/3 G/F, Φ ≈ Ψ/2 and non-vanishing slip on small scales

→ Needs screening on very small scales (Chameleon mechanism)

Scale-dependent growth is typical for non- Λ (sound horizon, massive scalaron, screening) and non-vanishing slip is typical for modified gravity models (as well as modified GW propagation).

Non-linear scales are a key challenge

- Boltzmann solvers (for scalar-field & phenomenological models) are now reliable.
- But we need reliable model predictions at <1% accuracy also on small, non-linear scales this is already a challenge for LCDM!
- There are *many* DE/MG models, and each one is more complicated to simulate than LCDM.
- Typically, we have to resort to 'small' N-body simulations or approximate approaches.
- MG models also include features like screening and instabilities that may be absent in linear calculations or simplified treatments.

Example: k-essence with low speed of sound in EFT framework is unstable at non-linear level, but nonlinear contributions are important for those models.

(Hassani et al. arXiv:2204.13098)

Constraints on "Dark Energy"

Euclid Figure of Merit

	w ₀ , w _a FoM	Flat	Non-flat
Linear setting			
GCs		40	19
Pessimistic setting			
GCs		14	10
WL		23	5
GC _s +WL		99	40
GC _{ph} +WL		64	14
GC _s +WL+GC _{ph}		123	49
$WL+GC_{ph}+XC^{(GC_{ph},WL)}$		367	59
$GC_s+WL+GC_{ph}+XC^{(GC_{ph},WL)}$		377	128
Optimistic setting			
GCs		55	19
WL		44	12
GC _s +WL		157	87
GC _{ph} +WL		235	129
GC _s +WL+GC _{ph}		398	218
$WL+GC_{ph}+XC^{(GC_{ph},WL)}$		1033	326
$GC_s + WL + GC_{ph} + XC^{(GC_{ph},WL)}$		1257	500

Euclid prep VII: Forecast validation Blanchard et al, arXiv:1910.09273

Comments:

- FoM ~ inverse of w0/wa error ellipse.
- ESA expects a FoM of 400 for Euclid alone.
- Errors on w0/wa:
 - Planck + BAO/SN-Ia : 0.080 / 0.3
 - Planck + BAO/RSD WL : 0.2 / 0.6
 - Euclid 3x2pt pessimistic: 0.042 / 0.17
 - Euclid 3x2pt optimistic : 0.027 / 0.10
- Adding CMB can improve errors by ca 50% cf Ilic et al, arXiv:2106.08346

Constraints on "Modified Gravity"

Constraints on "Modified Gravity"

Euclid on "Modified Gravity"

(Casas et al arXiv:1703.01271 – not official Euclid forecast)

Parametrisation μ , $\Sigma \sim \Omega_{DE}(a)$, Red Book specifications for Euclid, fairly ad-hoc non-linear modeling

Euclid (Redbook)	Ω_c	Ω_b	n_s	$\ell \mathcal{A}_s$	h	μ	η	Σ
Fiducial	0.254	0.048	0.969	3.060	0.682	1.042	1.719	1.416
GC(lin)	1.9%	6.4%	3%	2.8%	4.5%	17.1%	1030%	641%
GC(nl-HS)	0.9%	2.5%	1.3%	0.8%	1.7%	1.7%	475%	291%
GC(nl-HS)+Planck	0.7%	0.6%	0.3%	0.2%	0.3%	1.7%	16.8%	10.3%
WL(lin)	7.8%	25.7%	9.9%	10.3%	19.1%	58.2%	106%	9.3%
WL(nl-HS)	6.3%	20.7%	4.6%	5.8%	13.8%	23.3%	40.9%	4.6%
WL(nl-HS)+Planck	2.1%	1.1%	0.4%	0.7%	0.7%	11.8%	21.8%	2.8%
GC+WL(lin)	1.8%	5.9%	2.8%	2.3%	4.2%	7.1%	10.6%	2%
GC+WL(lin)+Planck	1.0%	0.7%	0.4%	0.4%	0.4%	6.2%	9.8%	1.5%
GC+WL(nl-HS)	0.8%	2.2%	0.8%	0.7%	1.5%	1.6%	2.4%	1.0%
GC+WL(nl-HS)+Planck	0.7%	0.6%	0.2%	0.2%	0.3%	1.6%	2.4%	0.9%
GC+WL(nl-Halofit)+Planck	0.6%	0.5%	0.2%	0.2%	0.2%	0.8%	1.7%	0.8%

- WL best for Σ, GC for μ (no surprise)
- non-linear scales important
- ~percent uncertainties on μ, Σ (probably a bit optimistic)

Constraints on f(R)

Euclid and f(R)

(Casas et al, arXiv:2306.11053, not yet published)

Hu & Sawicki type model:

$$f(R) = -6\Omega_{\text{DE},0} \frac{H_0^2}{c^2} + |f_{R0}| \frac{\bar{R}_0^2}{R}$$

Background close to LCDM as f_{R0} (< 0) small.

Non-linear scales: fitting formula calibrated with N-body sims

-
$$|f_{R0}| = (5.0^{+2.2}_{-1.5} \times 10^{-6})$$
 with spectroscopic GC_{sp} alone;

-
$$|f_{R0}| = (5.0^{+3.9}_{-2.2} \times 10^{-6})$$
 with WL alone;

$$-|f_{R0}| = (5.0^{+0.91}_{-0.77} \times 10^{-6})$$
 combining WL, GC_{ph}, and XC_{ph}

-
$$|f_{R0}| = (5.0^{+0.62}_{-0.55} \times 10^{-6})$$

with the combination $GC_{sp} + WL + GC_{ph} + XC_{ph}$

Significant impact of pessimistic cuts on photometric probes.

Euclid and Jordan-Brans-Dicke

(Frusciante et al, arXiv:2306.12368, not yet published)

$$S_{\rm BD} = \int d^4x \sqrt{-g} \left[\frac{c^4}{16\pi} \left(\phi R - \frac{\omega_{\rm BD}}{\phi} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - 2\Lambda \right) + \mathcal{L}_{\rm m} \right]$$

$$\Sigma = \frac{1}{G_{\rm N}\phi}, \qquad \text{(quasistatic} \\ \mu = \frac{4 + 2\omega_{\rm BD}}{3 + 2\omega_{\rm BD}}\Sigma, \\ \eta \equiv \frac{\Phi}{\Psi} = \frac{1 + \omega_{\rm BD}}{2 + \omega_{\rm BD}}$$

current constraints:

small scales: $\omega_{BD} > 10^5 \rightarrow$ absence of screening is a problem cosmology : $\omega_{BD} > 10^3$ [prior dependence]

Euclid: 2 scenarios: fiducial ω_{BD} = 800 and 2500 (using $\log_{10} \omega_{BD}$) NL spectra from HMCODE calibrated to N-body sims

Optimistic:	Pessimistic:
JBD1: 3x2pt : 27% ; adding GCsp : 25%	JBD1 can be detected,
JBD2: 3x2pt : 48%; adding GCsp : 40%	JBD2 not with high significance.

Euclid and DGP (Dvaliet al, 2000)

(Frusciante et al, arXiv:2306.12368, not yet published)

Current constraints: $\Omega_{rc} < 0.2 - 0.3$

Euclid: 2 scenarios: fiducial $\log_{10} \Omega_{rc} = -0.6$ ($\Omega_{rc} = 0.25$) and $\log_{10} \Omega_{rc} = -6$ NL spectra from halo-model reaction approach based on MG change to linear clustering

Optimistic: nDGP1: 3x2pt 32%, adding GCsp 26% nDGP2: only upper limit $\Omega_{rc} < 0.072$ (~ consistent with nDGP1 results)

Summary

- We can model DE/MG at different levels, closer to theory or closer to observations.
- Euclid will allow to significantly tighten DE/MG constraints, relative to today.
 - But of course we really want to see a deviation from Lambda Euclid will allow us to distinguish between models that are still compatible with Lambda.
- Much information comes from non-linear scales, this is a critical challenge for theorists / simulators.
- We also want to include CMB data (ongoing).
- And remember that we should check *everything* (not only Lambda), including the cosmological principle!

BACKUP SLIDES

Fluids at perturbation level

Constraining the neutrino fluid

- significant detection of additional radiation fluid in the CMB : "neutrino anisotropies"
- compatible with expected values

Parameter	TT+lowP	TT+lowP+BAO	TT, TE, EE+lowP	TT,TE,EE+lowP+BAO
$\sigma: c_{\rm vis}^2$	$0.47\substack{+0.26\\-0.12}$	$0.44^{+0.15}_{-0.10}$	0.327 ± 0.037	0.331 ± 0.037
$\delta p: c_{eff}^2$	0.312 ± 0.011	0.316 ± 0.010	0.3240 ± 0.0060	0.3242 ± 0.0059

Forecast specifications

pessimistic settings:
$$k_{max}(GC_s) = 0.25 h \text{ Mpc}^{-1}$$
,
 $\ell_{max}(WL) = 1500$,
 $\ell_{max}(GC_{ph}) = \ell_{max}(XC^{(GC_{ph},WL)}) = 750$,
 GC_{ph} for $z < 0.9$ when combined with GC_s ;
optimistic settings: $k_{max}(GC_s) = 0.3 h \text{ Mpc}^{-1}$, with fixed σ_p and σ_v ,
 $\ell_{max}(WL) = 5000$,
 $\ell_{max}(GC_{ph}) = \ell_{max}(XC^{(GC_{ph},WL)}) = 3000$.

- No cross-correlation (XC) between GCs and WL/GCph included (but no redshift overlap in pessimistic scenario).
- Changing neutrino mass sum to 0.15 eV does not change the forecasted errors significantly (<~ 1% on errors).

Euclid and Dark Energy

Euclid prep VII: Forecast validation arXiv:1910.09273

Adding CMB to Euclid can give another ca 50% improvement on w_0 and on w_a , cf arXiv:2106.08346