Teleparallel Cosmology Towards a framework to tackle cosmic tensions

Jackson Levi Said

Institute of Space Sciences and Astronomy, University of Malta

Outline

- **Standard gravity** and the motivation for modified gravity
- Modified Gravity through other branches of physics
- The Teleparallel Gravity (TG) formalism
- Extended TG cosmology observations
- Model-independent cosmology
- Concluding Remarks

The H_0 Tension

The H_0 Tension

Di Valentino et al. CQG, 38 (15) (2021)

Cosmology Intertwined, JHEAp. 2204, 002 (2022)

Modified Gravity through Lovelock's Theorem

The Modified Gravity Landscape

What inspiration can we get from other branches of physics?

Inspiration from Particle Physics

- Gauge Principle: Replace global symmetries by local ones
- Group generators produce compensating fields
- This results in the **standard model forces**

Can we apply this to gravity?

Gauge theory of gravity

- Formulating a gauge theory of gravity (1956 onwards)
- Starting from special relativity (SR)
 - Applying Yang-Mills theory to SR
 - Result is Poincaré gauge theory (curvature and torsion appear as field strengths)
- Torsion is the field strength of the translation group

Hehl et al. Phys.Rept. 258, 1 (1995) [arXiv:gr-qc/9402012]

Modified Gauge Gravity

- One can always modify gravity (supergravity, conformal, metric affine,...)
- In all of them, torsion is related to the gauge structure of the theory
- Here, torsion opens the possibility of having a quantum theory of gravity

Modifying Gravity

- Accelerating Universe (1998): Thousands of works in modified gravity ($f(\mathcal{R})$, Horndeski, Galileon, Lovelock, massive, Weyl,...)
- These are almost all curvature-based
- Can we **modify gravity** using **torsion**?

Saridakis et al. [The Cantata Consortium], Modified Gravity and Cosmology: An Update by the CANTATA Network. Springer, Cham (2021) [arXiv:2105.12582]

Rethinking the connection

Spacetime tells matter how to move; matter tells spacetime how to curve

John Archibald Wheeler

Connection of gravity: Curvature is a property of the **connection**,

not of the spacetime

Levi Said, Sept 2023 - 12 of 52

The Teleparallel Equivalent of GR (TEGR)

- **TEGR:** This is the simplest torsional theory of gravity
- Tetrad (e^{a}_{μ}): Relate the tangent space ($g_{\mu\nu} = \eta_{ab}e^{a}_{\mu}e^{b}_{\nu}$)
- Use the **teleparallel connection** ($\Gamma^{\sigma}_{\mu\nu} = e_a{}^{\sigma}\partial_{\nu}e^a{}_{\mu} + e_a{}^{\sigma}\omega^a{}_{\nu\mu}$) instead of the **Levi-Civita connection** (Christoffel symbols)
- Torsion tensor: Measures torsion $(T^{\sigma}_{\mu\nu} = \Gamma^{\sigma}_{\nu\mu} \Gamma^{\sigma}_{\mu\nu})$
- TEGR Action:

$$S = -\frac{1}{16\pi G} \int d^4 x \ e[T]$$

where $T \equiv \frac{1}{4} T^{\rho\mu\nu} T_{\rho\mu\nu} + \frac{1}{2} T^{\rho\mu\nu} T_{\nu\mu\rho} - T_{\rho\mu}^{\ \rho} T^{\nu\mu}_{\ \nu}$

Levi Said, Sept 2023 - 13 of 52

Modified Teleparallel Gravity

Levi Said, Sept 2023 - 14 of 52

f(T) Teleparallel Gravity

- Curvature-Torsion Relation: $\mathcal{R} = -T + B$
- f(T) Gravity: Inspire by $f(\mathcal{R})$ gravity

$$S = \frac{1}{16\pi G} \int d^4x \ e[-T + f(T)] + S_{\text{mat}}$$

• Friedmann equations:

$$H^{2} = \frac{8\pi G}{3}\rho_{m} - \frac{f(T)}{6} + \frac{T}{3}f_{T}$$
$$\dot{H} = -\frac{4\pi G(\rho_{m} + p_{m})}{1 - f_{T} - 2Tf_{TT}}$$

$$T = 6H^2$$
$$= 6\left(\frac{\dot{a}}{a}\right)^2$$

 $B \propto \nabla^{\mu} T^{\lambda}_{\lambda \mu}$

Levi Said, Sept 2023 - 15 of 52

Scalar Perturbations

- f(T) gravity leaves imprints at the perturbative level $e^{0}_{\mu} = \delta^{0}_{\mu}(1+\psi), e^{i}_{\mu} = \delta^{i}_{\mu}a(1-\phi) \Rightarrow ds^{2} = (1+2\psi)dt^{2} - a^{2}(1-2\phi)\delta_{ij}dx^{i}dx^{j}$
- Matter over-density perturbations also contribute through

$$\delta_m = \frac{\delta \rho_m}{\rho_m}$$

- Matter perturbation evolution equation $\ddot{\delta}_m + 2H\dot{\delta}_m + 4\pi G_{\rm eff}\rho_m\delta_m = 0$

Identifying the effective gravitational constant

$$G_{\rm eff} = \frac{G_N}{1 + f_T}$$

f(T, B) Gravity

• Curvature-Torsion Relation: $\mathcal{R} = -T + B$

$$B \propto \nabla^{\mu} T^{\lambda}{}_{\lambda\mu}$$

- Naturally, $f(T) \neq f(-T+B) = f(\mathcal{R})$
- f(T, B) organically decouples second-order (T) and fourthorder (B) contributions
- Only linear *B* is a boundary term
- f(T, B) Gravity: Generalizing $f(\mathcal{R})$ gravity

$$S = \frac{1}{16\pi G} \int d^4x \ e[-T + \mathbf{f}(\mathbf{T}, \mathbf{B})] + S_{\text{mat}}$$

f(T, B) Background Cosmology

• As before, the Friedmann equations are

 $3H^2 = 8\pi G(\rho_m + \rho_{\text{eff}})$ $3H^2 + \dot{H} = -8\pi G(p_m + p_{\text{eff}})$

• Therefore, the effective fluid will have

$$8\pi G\rho_{\text{eff}} = 3H^2(3f_B + 2f_T) - 3H\dot{f}_B + 3\dot{H}f_B - \frac{1}{2}f$$

 $8\pi G p_{\text{eff}} = \frac{1}{2}f - (3H^2 + \dot{H})(3f_B + 2f_T) - 2H\dot{f}_T + \dot{f}_B$

• Giving an effective EoS

$$\omega_{\rm eff} = -1 + \frac{\ddot{f}_B - 3H\dot{f}_B - 2\dot{H}f_T - 2H\dot{f}_T}{3H^2(3f_B + 2f_T) - 3H\dot{f}_B + 3\dot{H}f_B - \frac{1}{2}f}$$

$$T = 6H^{2}$$
$$B = 6(3H^{2} + \dot{H})$$
$$\mathcal{R} \equiv -T + B = 6(2H^{2} + \dot{H})$$

Horndeski Gravity

Horndeski Gravity: Produces the most general second-order theory that contains only one scalar field (in standard gravity)

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} [\mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5]$$

where

$$\begin{aligned} \mathcal{L}_{2} &= G_{2}(\phi, X) \\ \mathcal{L}_{3} &= G_{3}(\phi, X) \Box \phi \\ \mathcal{L}_{4} &= G_{4}(\phi, X) \mathcal{R} + G_{4,X}(\phi, X) \big[(\Box \phi)^{2} - \phi_{;\mu\nu} \phi^{;\mu\nu} \big] \\ \mathcal{L}_{5} &= G_{5}(\phi, X) \mathcal{G}_{\mu\nu} \phi^{;\mu\nu} - \frac{1}{6} G_{5,X}(\phi, X) \big[(\Box \phi)^{3} + 2\phi_{;\mu}^{\ \nu} \phi_{;\nu}^{\ \alpha} \phi_{;\alpha}^{\ \mu} - 3\phi_{;\mu\nu} \phi^{;\mu\nu} \Box \phi \big] \end{aligned}$$

Levi Said, Sept 2023 - 19 of 52

Teleparallel Horndeski Gravity (TeleDeski)

- **<u>TeleDeski Goal</u>**: What is the **TG analog** of **Horndeski theory**?
- <u>Conditions</u>: (i) Field equations must be second-order; (ii) terms cannot be parity-violating; (iii) contributions can be at most quadratic in torsion
- Extra contribution: $\mathcal{L}_{Tele} = G_{Tele}(\phi, X, T, T_{Ax}, T_{vec}, I_2, J_i) [I_2 linear coupling with matter, <math>J_i$ quadratic coupling with matter]

Tensor Perturbations

- Taking tensor perturbations for tetrads fields

$$e^{0}{}_{\mu} = \delta^{0}_{\mu}, e^{i}{}_{\mu} = \delta^{i}_{\mu} + \frac{1}{2}\delta^{j}_{\mu}\delta^{ki}h_{jk} \Rightarrow ds^{2} = dt^{2} - a^{2}(\delta_{ij} + h_{ij})dx^{i}dx^{j}$$

Produces a gravitational wave propagation equation (GWPE)

$$\ddot{h}_{ij} + (3 + \alpha_M)H\dot{h}_{ij} - (1 + \alpha_T)\frac{\kappa}{a^2}h_{ij} = 0$$

in the Fourier domain

- $\alpha_T = c_T^2 - 1$ is the **tensor excess speed** and $\alpha_M = \frac{1}{HM_*^2} \frac{dM_*^2}{dt}$ is the **Planck mass run rate** (M_*^2 is the effective **Planck mass**)

The Era of Multi-messenger Astronomy

GW170817

LIGO-Virgo localization

 $M_{\rm Tot} = 2.74^{+0.04}_{-0.01} M_{\odot}$

$$\Delta T = 1.7 \mathrm{s}$$

$$c_T = c_{-3 \times 10^{-16}}^{+7 \times 10^{-16}}$$

GRB170817A

Fermi Telescope

Levi Said, Sept 2023 - 22 of 52

Virgo observatory

GWs in TeleDeski

$$\ddot{h}_{ij} + (3 + \alpha_M) H \dot{h}_{ij} - (1 + \alpha_T) \frac{k^2}{a^2} h_{ij} = 0$$

- <u>TeleDeski GWPE</u>:

$$\alpha_{T} = \frac{2X}{M_{*}^{2}} \left(2G_{4,X} - 2G_{5,\phi} - G_{5,X} (\ddot{\phi} - \dot{\phi}H) - 2G_{\text{Tele},J_{8}} - \frac{1}{2} G_{\text{Tele},J_{5}} \right) = 0$$

where $M_{*}^{2} = 2 \left(G_{4} - 2XG_{4,X} + XG_{5,\phi} - \dot{\phi}XHG_{5,X} + 2XG_{\text{Tele},J_{8}} + \frac{1}{2}XG_{\text{Tele},J_{5}} - G_{\text{Tele},T} \right)$

- Running Planck mass: Continues to observe $\alpha_M = \frac{1}{HM_*^2} \frac{\alpha_M}{dt}$

New possibilities: Opens new possibilities for reviving Horndeski gravity
 Bahamonde et al. PRD 101, 084060 (2020)

Levi Said, Sept 2023 - 23 of 52

What do observations tell us about modified teleparallel gravity?

$f_{\rm PLM}(T)$ Model

Model:
$$f_{\text{PLM}} = \alpha_1 T^{b_1}$$

where $\alpha_1 = (6H_0^2)^{1-b_1} \frac{1-\Omega_0^m}{2b_1-1}$

$$G_{eff}(z\simeq 0)\simeq G_N$$

KVNO - $\Delta \alpha / \alpha$ from quasar data

Precision Cosmology Constraints for $f_{PLM}CDM$

Results for $f_{\rm PLM}$ CDM

Data Sets	$H_0 \left[\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1} \right]$	$\Omega_{\mathrm{m,0}}$	b_1	ΔAIC	ΔBIC
CC+SN	68.5 ± 1.8	$0.350\substack{+0.045\\-0.064}$	$-0.22^{+0.41}_{-0.48}$	1.45	6.43
CC+SN+R19	$71.3^{+1.3}_{-1.4}$	$0.326\substack{+0.045\\-0.065}$	$-0.13^{+0.40}_{-0.50}$	1.51	6.50
CC+SN+HW	71.0 ± 1.3	$0.329^{0.045}_{0.062}$	$-0.16\substack{+0.41\\-0.48}$	1.51	6.50
CC+SN+TRGB	$69.1^{+1.4}_{-1.3}$	$0.344\substack{+0.045\\-0.063}$	$-0.20^{+0.42}_{-0.47}$	1.87	6.85
CC+SN+BAO	67.1 ± 1.6	0.294 ± 0.015	0.06 ± 0.13	1.68	6.68
CC+SN+BAO+R19	69.9 <u>+</u> 1.2	$0.305\substack{+0.014\\-0.013}$	$-0.14\substack{+0.12\\-0.13}$	0.56	5.56
CC+SN+BAO+HW	69.7 <u>+</u> 1.2	$0.304\substack{+0.014\\-0.012}$	$-0.12\substack{+0.12\\-0.13}$	0.89	5.89
CC+SN+BAO+TRGB	68.1 ± 1.2	0.298 ± 0.014	$-0.01\substack{+0.11\\-0.12}$	2.00	7.00

$$AIC = 2k - 2 \ln L$$

Number of Model parameters Maximum likelihood

 $|BIC = k \ln n - 2 \ln L|$

Number of points in a data set

Levi Said, Sept 2023 - 27 of 52

$f_{\rm PLM}$ CDM at perturbative level

Levi Said, Sept 2023 - 28 of 52

Results for $f_{\rm PLM}$ CDM

Data Sets	$H_0 \left[\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1} \right]$	$\Omega_{ m m,0}$	b_1	$\sigma_{8,0}$
CC+BAO	$66.9^{+2.0}_{-1.9}$	$0.291\substack{+0.013\\-0.012}$	$0.14^{+0.17}_{-0.21}$	—
CC+BAO+RSD	$68.5^{+1.3}_{-1.1}$	$0.283\substack{+0.009\\-0.009}$	$-0.046\substack{+0.100\\-0.150}$	$0.778^{+0.036}_{-0.037}$
PN ⁺ +RSD	73.7 ± 1.00	0.289 ± 0.019	$0.071\substack{+0.073\\-0.102}$	$0.825\substack{+0.032\\-0.036}$
CC+PN ⁺ +BAO	$70.10\substack{+0.82 \\ -0.68}$	$0.305\substack{+0.010\\-0.010}$	-0.040 ± 0.087	_
CC+PN ⁺ +BAO+RSD	$70.44_{-0.71}^{+0.72}$	$0.296\substack{+0.009\\-0.009}$	$-0.068^{+0.073}_{-0.084}$	$0.803\substack{+0.032\\-0.084}$

Precision Cosmology Constraints for $f_{PLM}CDM$

Data Sets	S _{8,0}		
RSD	$0.710\substack{+0.058\\-0.060}$		
CC+BAO+RSD	$0.755\substack{+0.041\\-0.042}$		
PN⁺+RSD	$0.806\substack{+0.048\\-0.049}$		
CC+PN ⁺ +BAO+RSD	0.799 ± 0.037		

$f_{\rm PM}(T,B)$ Model

Recall:

$$S = \frac{1}{16\pi G} \int d^4 x \, e[-T + \boldsymbol{f}(\boldsymbol{T}, \boldsymbol{B})] + S_{\text{mat}}$$

Model:

$$f_{\mathsf{PM}}(T,B) = \alpha_1(B)^{p_1}$$

where

$$\alpha_1 = \frac{6H_0^2 (\Omega_{\rm m,0} + \Omega_{\rm r,0} - 1)}{(p_1 - 1)(B_0)^{p_1} + 6H_0 (p_1(p_1 - 1)(B_0)^{p_1 - 2}\dot{B}|_{t=t_0})}$$

Precision Cosmology Constraints for f_{PM} CDM

Levi Said, Sept 2023 - 32 of 52

Results for $f_{\rm PM}$ CDM

Data Sets	$H_0 \left[\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1} \right]$	$\Omega_{\mathrm{m,0}}$	p_1	ΔAIC	ΔBIC
CC+SN	$68.5^{+2.1}_{-2.2}$	$0.281\substack{+0.027\\-0.023}$	$0.140\substack{+0.090\\-0.109}$	1.21	6.19
CC+SN+R21	72.0 ± 1.1	$0.269^{+0.021}_{-0.016}$	$0.080^{+0.108}_{-0.068}$	1.04	6.02
CC+SN+F21	$69.1^{+1.5}_{-1.4}$	$0.279\substack{+0.025\\-0.022}$	$0.143\substack{+0.079\\-0.113}$	1.10	6.08
CC+SN+BAO	67.5 ± 1.4	0.305 ± 0.017	0.058 ± 0.053	-0.04	4.96
CC+SN+BAO+R21	$70.32\substack{+0.95\\-0.94}$	0.314 ± 0.016	$0.012\substack{+0.027\\-0.009}$	0.79	5.79
CC+SN+BAO+F21	68.1 ± 1.2	0.308 ± 0.017	$0.046\substack{+0.045\\-0.042}$	0.13	5.12

$$AIC = 2k - 2\ln L$$

$$BIC = k \ln n - 2 \ln L$$

Can we do this in a modelindependent way?

Gaussian Processes Regression

- The covariance function contains **non-physical hyperparameters** θ which define the distribution $k(\theta, x, x')$
- Iterating over these values using Bayesian inference (or others) can produce better hyperparameters
- The result is a (physics) model independent reconstruction of the behavior of some parameter
- This is superior to regular fitting because it is nonparametric and so assumes no physical model whatsoever

The Covariance Functions

Square Exponential H_0 GP

Square Exponential Covariance for H_0

Distance (in σ units) between the H_0 arguments:

$$d(H_{0,i}, H_{0,j}) = \frac{H_{0,i} - H_{0,j}}{\sqrt{\sigma_i^2 + \sigma_j^2}}$$

Data set(s)	H_0 [km s ⁻¹ Mpc ⁻¹]	$d(H_0, H_0^{\text{R19}})$	$d(H_0, H_0^{\mathrm{TRGB}})$	$d(H_0, H_0^{\mathrm{HW}})$
CC	67.539 <u>+</u> 4.772	-1.304	-0.441	-1.133
$CC+H_0^R$	73.782 ± 1.374	-0.126	1.711	0.217
CC+SN	67.001 ± 1.653	-3.225	-1.118	-2.617
$CC+SN+H_0^R$	72.022 ± 1.076	-1.128	1.026	-0.622
CC+SN+BAO	66.197 ± 1.464	-3.841	-1.513	-3.113
$CC+SN+BAO+H_0^R$	71.18 ± 1.025	-1.628	0.645	-1.046

Boundary Conditions

 Λ CDM (or $f(T) = \Lambda$) works at late times

This implies that $f_T(z \simeq 0) \simeq 0$ $\Rightarrow f(z \simeq 0) = 6H_0^2(\Omega_{m_0} - 1)$

Briffa et al. CQG 38 055007 (2020)

$$S = \frac{1}{16\pi G} \int d^4 x \, e[-T + \mathbf{f}(\mathbf{T})] + S_{\text{matter}}$$

Propagating
$$f(T(z))$$

- The Friedmann equation contains f_T which **need to be eliminated finite difference** methods
- Using a **central differencing** approach (error $\sim O(\Delta z^2)$), we can assume $f'(z_i) \simeq \frac{f(z_{i+1}) - f(z_{i-1})}{z_{i+1} - z_{i-1}}$
- Therefore, we can remove the $f_T(T) = f'(z)/T'(z)$

$$H^{2} = \frac{8\pi G}{3}\rho_{m} - \frac{f(T)}{6} + \frac{T}{3}f_{T}$$

• This then gives a propagation equation

$$f(z_{i+1}) = f(z_{i-1}) + 2(z_{i+1} - z_{i-1}) \frac{H'(z_i)}{H(z_i)} \left(3H(z_i)^2 + \frac{f(z_i)}{2} - 3H_0^2 \Omega_{m_0} (1 + z_i)^3 \right)$$

• Using forward differencing, we can produce a second boundary condition

Square Exponential f(T) GP

Levi Said, Sept 2023 - 41 of 52

Open Problems with GP Reconstructions

• **Overfitting at origin:** GP is very prone to overfitting for small data sets, which is especially pronounced at the origin, i.e. Hubble constant

• Kernel Selection Problem: There is no natural kernel for cosmology

Artificial Neural Networks (ANNs)

Training Data for the ANN

70 1.2 60 1.0 σ_H(z)/kms⁻¹Mpc⁻¹ 0 0 8 6 '-0.8 P(Z)0.6 0.4 10 0.2 0.0 ⊾ 0.0 0 0.5 1.0 1.5 2.0 1.0 2.0 0.0 0.5 1.5 Ζ Ζ

This observes the gamma distribution: $\mathcal{P}(z, \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} e^{-\lambda z}$ Mean: $\sigma_H = 14.25 + 3.42z$ Upper error: $\sigma_H = 21.37 + 10.79z$ Lower error: $\sigma_H = 7.14 - 3.95z$

Levi Said, Sept 2023 - 44 of 52

CC+BAO dataset

Designing the ANN

• **<u>Risk</u>** – Optimizes the **number of hidden layers and neurons** in an ANN

$$\operatorname{risk} = \sum_{i=1}^{N} (\operatorname{Bias}_{i}^{2} + \operatorname{Variance}_{i}) = \sum_{i=1}^{N} \left(\left[H_{Obs}(z_{i}) - H_{pred}(z_{i}) \right]^{2} + \sigma_{H}^{2}(z_{i}) \right)$$

Loss – Balances the number of iterations a system needs to predict the observational data
 1. L1 (Least absolute deviation)

$$L1 = \sum_{i=1}^{N} \left| H_{Obs}(z_i) - H_{pred}(z_i) \right|$$

- 2. Smoothed L1 (SL1)
- 3. Mean Square Error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} \left(H_{Obs}(z_i) - H_{pred}(z_i) \right)^2$$

Building the ANN

Risk function for **one layer** (number of neurons = 2^n $n \in \{7, ... 14\}$)

Using the ANN

MSE:
$$H_0 = 69.76 \pm 14.82 \text{ km s}^{-1} \text{Mpc}^{-1}$$

L1: $H_0 = 68.93 \pm 11.90 \text{ km s}^{-1} \text{Mpc}^{-1}$
SL1: $H_0 = 69.18 \pm 13.92 \text{ km s}^{-1} \text{Mpc}^{-1}$

One layer is preferred

What about priors?

Whisker Plot of Results

Propagating f(T)CDM

Conclusion

- TG offers an interesting alternative to traditional ways to modify gravity
- TG satisfies a number of preliminary observational tests, and offers a more consistent picture of modified gravity
- TG is compatible with novel methods being developed in conjunction with machine learning

Thank You

