M_{w} and the Electroweak Fit in the SM and beyond

Luca Silvestrini

INFN, Rome

- Introduction
- M_{w} and the fit to EWPO in the SM
- Mw and the fit to EWPO beyond the SM:
- Oblique NP
- Higgs Triplet
- SMEFT
- Summary and outlook

Based on J. de Blas, M. Pierini, L. Reina \& L.S., arXiv:2204.04204 See also ~ 100 more papers...

INTRODUCTION

- $S U(2)_{\llcorner } \times U(1)_{y}$ symmetry hidden at low energies, but restored in the UV
- tree-level relations among weak couplings and masses corrected by finite and calculable loop corrections
- precision measurements of masses and couplings
- test the quantum structure of the SM
- probe NP through its virtual effects

SYMMETRIES OF THE SM HIGGS SECTOR

In the SM, one Higgs doublet φ w. potential

$$
V(\varphi)=-\frac{\mu^{2}}{2}|\varphi|^{2}+\frac{\lambda}{4}|\varphi|^{4}=-\frac{\mu^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\lambda}{4} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)^{2}
$$

with $\Phi \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{cc}\varphi_{0}^{*} & \varphi_{+} \\ -\varphi_{+}^{*} & \varphi_{0}\end{array}\right)$, invariant under $\Phi \rightarrow U_{L} \Phi U_{R}^{\dagger}$ where $S U(2)\llcorner$ coincides with gauge $S U(2)$, while Y with the third component of $S \cup(2)_{R}$. The charge-conserving $\langle\Phi\rangle \equiv \frac{1}{2}\left(\begin{array}{ll}v & 0 \\ 0 & v\end{array}\right)$ leaves the diagonal $S U(2)_{v}$ unbroken, ensuring $M_{W_{1}}=M_{W_{2}}=M_{W_{3}}$ and $\rho \equiv \frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}=1$

SYMMETRIES OF THE SM HIGGS SECTOR

- Promoting right-handed quarks to $\operatorname{SU}(2)_{R}$ doublets, one can write Yukawa couplings in the form

$$
\bar{Q}_{L} \Phi\left(\begin{array}{cc}
Y_{u} & 0 \\
0 & Y_{d}
\end{array}\right) Q_{R}
$$

which would be $S U(2)_{R}$-invariant for $\mathrm{Y}_{\mathrm{u}}=\mathrm{V}_{\mathrm{d}}$. Therefore, the tree-level prediction $\rho=1$ gets loop corrections proportional to $G_{F} m_{t}{ }^{2}$.

EXPERIMENTAL INPUTS

- SM input parameters:
- $G_{F}, \alpha, M_{Z}, M_{H}, m_{+}, \alpha_{s}\left(M_{Z}\right), \Delta \alpha_{h a d}{ }^{(5)}$
- For $\Delta \alpha_{\text {had }}{ }^{(5)}$ we use lattice QCD in the Euclidean + perturbative running
- For m_{t}, "standard" average completely dominated by very recent CMS l+jets measurement: $m_{+}=171.77 \pm 0.38 \mathrm{GeV}$. However, there is a 3.5σ tension with the TeVatron average $m_{+}=174.34 \pm 0.64 \mathrm{GeV}$, so consider also "conservative" average with error inflated to 1 GeV . Notice: PDG recipe would give a "ultra-conservative" 1.7 GeV error.

Mw: New Exp. Average

- Also for M_{w}, "standard" average completely dominated by very recent CDF measurement.
- Taking systematic errors fully correlated, we obtain $M_{w}=80413.3 \pm 8.0 \mathrm{MeV}$.
- However, also in this case there are tensions between LHC, TeVatron and LEP measurements, so consider also "conservative" average with error inflated à la PDG to 15 MeV

$M_{w}: S M$ vs EXPERIMENT

| Model | Pred. $M_{W}[\mathrm{GeV}] \quad$ Pull
 standard average | Pred. $M_{W}[\mathrm{GeV}]$
 conservative average | |
| :---: | :---: | :---: | :---: | :---: |
| SM | $80.3499 \pm 0.0056 \quad 6.5 \sigma$ | 80.3505 ± 0.0077 | 3.7σ |

- The SM prediction is obtained omitting the experimental information on Mw. Previously, the tension was 1.8σ. Current theory error on M_{w} in the SM is 4 MeV Awramiketal, 'o3
- In the "ultra-conservative" scenario for m_{+}, the pull is slightly reduced to 3.4σ

INTERPLAY OF M_{w} WITH OTHER OBSERVABLES

standard

Roma Tre Topical Seminar 2022
Luca Silvestrini

INTERPLAY OF M_{w} WITH OTHER OBSERVABLES

standard

conservative

LOCAL vs GLOBAL SIGNIFICANCE

- Considering the whole set of EWPO, what is the global agreement with the SM?
- Compute global p-value of the "full prediction", taking into account experimental and theoretical correlations:
- $p=2.4510^{-5}$, i.e. 4.2σ (standard scenario)
- $p=0.10$, i.e. 1.6σ (conservative scenario)
- $p=0.18$, i.e. 1.4σ (ultra-conservative scenario)

M_{w} BEYOND THE SM

- Add heavy NP that decouples, leaving its virtual footprints:
- dominantly in gauge Boson propagators: "oblique" NP
- an interesting example: $\mathrm{Y}=0$ Higgs triple \dagger
- in the complete set of gauge-invariant dimension six operators (SMEFT)
- For more models (Z', composite Higgs, etc.) see e.g. Strumia '22

OBLIQUE NP

- Assume NP dominant contribution is in gauge Boson prodaaators:

$$
\begin{aligned}
S & =-16 \pi \Pi_{30}^{\mathrm{NP}}(0)=16 \pi\left[\Pi_{33}^{\mathrm{NP}}(0)-\Pi_{3 Q}^{\mathrm{NP}}(0)\right] \\
T & =\frac{4 \pi}{s_{W}^{2} c_{W}^{2} M_{Z}^{2}}\left[\Pi_{11}^{\mathrm{NP}}(0)-\Pi_{33}^{\mathrm{NP}}(0)\right], \\
U & =16 \pi\left[\Pi_{11}^{\mathrm{NP}^{\prime}}(0)-\Pi_{33}^{\mathrm{NP}^{\prime}}(0)\right]
\end{aligned}
$$

- EWPO are modified as follows:
$-\delta \Gamma$ z $\propto \quad-10\left(3-8 s_{W}^{2}\right) S+\left(63-126 s_{W}^{2}-40 s_{W}^{4}\right) T$
$-\delta M_{W}, \delta \Gamma{ }_{W} \propto \quad S-2 c_{W}^{2} T-\frac{\left(c_{W}^{2}-s_{W}^{2}\right) U}{2 s_{W}^{2}}$
- all other observables: $S-4 c_{W}^{2} s_{W}^{2} T$

OBLIQUE NP: U=0

standard

Roma Tre Topical Seminar 2022
Luca Silvestrini
conservative

-

OBLIQUE NP: RESULTS

- Compare models using the Information Criterion:

$$
I C \equiv-2 \overline{\log \mathcal{L}}+4 \sigma_{\log \mathcal{L}}^{2}
$$

	Result	Correlation	Result	Correlation	
	$\left(\mathrm{IC}_{\mathrm{ST}} / \mathrm{IC}_{\mathrm{SM}}=25.0 / 80.2\right)$		$\left(\mathrm{IC}_{\mathrm{STU}} / \mathrm{IC}\right.$		
S	0.100 ± 0.073	1.00		0.005 ± 0.096	1.00
T	0.202 ± 0.056	0.93	1.00	0.040 ± 0.120	0.91
U	-	-	-	0.134 ± 0.087	-0.65

- No significant gain in IC for $U \neq 0$

Model	Pred. $M_{W}[\mathrm{GeV}]$ standard average	Pred. $M_{W}[\mathrm{GeV}]$ conservative average		
SM	80.3499 ± 0.0056	6.5σ	80.3505 ± 0.0077	3.7σ
ST	80.366 ± 0.029	1.6σ	80.367 ± 0.029	1.4σ
STU	80.32 ± 0.54	0.2σ	80.32 ± 0.54	0.2σ

The Higgs Triplet Model

- Adding a Higgs Triplet with hypercharge $Y=0$ breaks custodial symmetry at tree level.
- Denoting by H the SM Higgs doublet and by $\Phi=\tau^{a} \phi^{a} / 2$ the triplet, the tree-level masses are $M_{Z}^{2}=\frac{1}{4}\left(g_{2}^{2}+g_{y}^{2}\right) v_{H}^{2}$ and $M_{W}^{2}=\frac{1}{4} g_{2}^{2} v_{H}^{2}+g_{2}^{2} v_{\phi}^{2}$
- Current data require $v_{\phi} \sim 3 \mathrm{GeV}$

The Higgs Triplet Model

- Most general Higgs potential is

$$
\begin{gathered}
V=m_{H}^{2} H^{\dagger} H+\frac{\lambda_{H}}{4}\left(H^{\dagger} H\right)^{2}+m_{\phi}^{2} \operatorname{tr}\left(\Phi^{2}\right)+\frac{\lambda_{\phi}}{4}\left(\operatorname{tr} \Phi^{2}\right)^{2} \\
+\kappa H^{\dagger} H \operatorname{tr}\left(\Phi^{2}\right)+\mu H^{\dagger} \Phi H
\end{gathered}
$$

- For large m_{ϕ}, at tree-level the triplet vev is

$$
\frac{v_{\phi}}{v_{H}}=\frac{\mu v_{H}}{4 m_{\phi}^{2}}
$$

- for $\mu \ll m_{\phi}$, decoupling limit: tree-level and loop contributions suppressed by $1 / m_{\phi}{ }^{2}$; e.g. for $\mu \sim v_{H}$ one needs $m_{\phi} \sim \mathrm{TeV}$

The Higgs Triplet Model

- for $\mu \sim m_{\phi}$ non-decoupling induced by the dimensionful coupling μ : everything vanishes as $1 / m_{\phi}{ }^{2}$ except for the loop corrections to the triplet vev, which induce a nonvanishing v_{ϕ}, i.e. a nonvanishing T and nothing else!
- Notice: this (non)decoupling becomes evident only in a "hybrid" scheme in which one uses as input α, G_{F} and M_{z} and computes all other observables in terms of v_{ϕ}
- Unitarity of WW scattering gives an upper bound on triplet masses:

$$
m_{\phi} \lesssim \frac{2 \sqrt{\pi} v_{H}^{2}}{v_{\phi}} \sim 70 \mathrm{TeV}
$$

THE SMEFT

- Most general gauge-invariant Lagrangian built with SM fields up to dimension d (here $d=6$)
- Some relevant operators in the "Warsaw basis":

$$
\begin{aligned}
& \mathcal{O}_{\phi W B}=\left(\phi^{\dagger} \sigma_{i} \phi\right) W_{\mu \nu}^{i} B^{\mu \nu}, \quad \rightarrow \text { S } \\
& \mathcal{O}_{\phi D}=\left(\phi^{\dagger} D^{\mu} \phi\right)^{*}\left(\phi^{\dagger} D_{\mu} \phi\right), \rightarrow \top \\
& \mathcal{O}_{l l}=\left(\overline{l_{L}} \gamma^{\mu} l_{L}\right)\left(\overline{l_{L}} \gamma^{\mu} l_{L}\right) \\
& \mathcal{O}_{\phi l}^{(1)}=\left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi\right)\left(\bar{l}_{L} \gamma^{\mu} l_{L}\right), \\
& \mathcal{O}_{\phi l}^{(3)}=\left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} \phi\right)\left(\bar{l}_{L} \sigma_{i} \gamma^{\mu} l_{L}\right), \\
& \mathcal{O}_{\phi e}=\left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right), \\
& \mathcal{O}_{\phi q}^{(1)}=\left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi\right)\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right), \\
& \mathcal{O}_{\phi q}^{(3)}=\left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} \phi\right)\left(\bar{q}_{L} \sigma_{i} \gamma^{\mu} q_{L}\right), \\
& \mathcal{O}_{\phi u}=\left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right), \\
& \mathcal{O}_{\phi d}=\left(\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right),
\end{aligned}
$$

M_{w} IN THE SMEFT

- Eight independent combinations of dim. 6 operators contribute to EWPO. In the Warsaw basis: $\quad \hat{o}_{\varphi f}^{(1)}=O_{\varphi f}^{(1)}-\frac{Y_{f}}{2} C_{\varphi D}, \quad f=l, q, e, u, d$,

$$
\begin{align*}
\hat{C}_{\varphi f}^{(3)} & =C_{\varphi f}^{(3)}+\frac{c_{w}^{2}}{4 s_{w}^{2}} C_{\varphi D}+\frac{c_{w}}{s_{w}} C_{\varphi W B}, \quad f=l, q, \tag{7}\\
\hat{C}_{l l} & =\frac{1}{2}\left(\left(C_{l l}\right)_{1221}+\left(C_{l l}\right)_{2112}\right)=\left(C_{l l}\right)_{1221},
\end{align*}
$$

- Again, one independent combination enters only M_{w} and Γ_{w}, namely: $\hat{c}_{p_{r}^{(a)}}^{\left(\hat{c}_{\omega} / 2\right.}$; very loose prediction for M_{w} from Γ_{w}

Model	Pred. $M_{W}[\mathrm{GeV}]$ Pull standard average	Pred. $M_{W}[\mathrm{GeV}]$ conservative average		
SMEFT	80.66 ± 1.68	-0.1σ	80.66 ± 1.68	-0.1σ

SMEFT: FIT RESULTS

$\hat{C}_{\varphi l}^{(1)}$	-0.007 ± 0.011	1.00						
$\hat{C}_{\varphi l}^{(3)}$	-0.042 ± 0.015	-0.68	1.00					
$\hat{C}_{\varphi e}$	-0.017 ± 0.009	0.48	0.04	1.00				
$\hat{C}_{\varphi q}^{(1)}$	-0.018 ± 0.044	-0.02	-0.06	-0.13	1.00			
$\hat{C}_{\varphi q}^{(3)}$	-0.113 ± 0.043	-0.03	0.04	-0.16	-0.37	1.00		
$\hat{C}_{\varphi u}$	0.090 ± 0.150	0.06	-0.04	0.04	0.61	-0.77	1.00	
$\hat{C}_{\varphi d}$	-0.630 ± 0.250	-0.13	-0.05	-0.30	0.40	0.58	-0.04	1.00
$\hat{C}_{l l}$	-0.022 ± 0.028	-0.80	0.95	-0.10	-0.06	-0.01	-0.04	-0.05

standard
averages

- Cirigliano et al. noted that a combination of these operators also contributes to first-row CKM unitarity violation. This effect can be compensated by $C^{(3)}{ }_{l q}$ which does not enter EWPO. However, $C^{(3)}{ }^{\text {q }}$ can be constrained by LHC e.g. in pp \rightarrow II.

EWPO BEYOND THE SM

	Measurement	ST	STU	SMEFT
$M_{W}[\mathrm{GeV}]$	80.413 ± 0.015	80.403 ± 0.013	80.413 ± 0.015	80.413 ± 0.015
$\Gamma_{W}[\mathrm{GeV}]$	2.085 ± 0.042	2.0916 ± 0.0011	2.0925 ± 0.0012	2.0778 ± 0.0070
$\sin ^{2} \theta_{\mathrm{eff}}^{\text {lept }}\left(Q_{\mathrm{FB}}^{\mathrm{had}}\right)$	0.2324 ± 0.0012	0.23143 ± 0.00014	0.23147 ± 0.00014	-
$P_{\tau}^{\mathrm{pol}}=\mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0014
$\Gamma_{Z}[\mathrm{GeV}]$	2.4955 ± 0.0023	2.4976 ± 0.0012	2.4951 ± 0.0022	2.4955 ± 0.0023
$\sigma_{h}^{0}[\mathrm{nb}]$	41.480 ± 0.033	41.4909 ± 0.0077	41.4905 ± 0.0077	41.482 ± 0.033
R_{ℓ}^{0}	20.767 ± 0.025	20.7507 ± 0.0084	20.7512 ± 0.0084	20.769 ± 0.025
$A_{\mathrm{FB}}^{0, \ell}$	0.0171 ± 0.0010	0.01637 ± 0.00023	0.01630 ± 0.00024	0.01660 ± 0.00032
$\mathcal{A}_{\ell}(\mathrm{SLD})$	0.1513 ± 0.0021	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0014
R_{b}^{0}	0.21629 ± 0.00066	0.21591 ± 0.00011	0.21591 ± 0.00011	0.21632 ± 0.00065
R_{c}^{0}	0.1721 ± 0.0030	0.172199 ± 0.000055	0.172199 ± 0.000055	0.17160 ± 0.00099
$A_{\mathrm{F}}^{0, b}$	0.0996 ± 0.0016	0.10359 ± 0.00075	0.10337 ± 0.00077	0.1009 ± 0.0014
$A_{\mathrm{FB}}^{0, c}$	0.0707 ± 0.0035	0.07403 ± 0.00059	0.07385 ± 0.00059	0.0735 ± 0.0022
\mathcal{A}_{b}	0.923 ± 0.020	0.934807 ± 0.000097	0.934779 ± 0.000100	0.903 ± 0.013
\mathcal{A}_{c}	0.670 ± 0.027	0.66811 ± 0.00052	0.66797 ± 0.00053	0.658 ± 0.020
\mathcal{A}_{s}	0.895 ± 0.091	0.935705 ± 0.000096	0.935677 ± 0.000097	0.905 ± 0.012
BR_{W}	0.10860 ± 0.00090	0.108385 ± 0.000022	0.108380 ± 0.000022	0.10900 ± 0.00038
$\sin ^{2} \theta_{\mathrm{eff}}^{\mathrm{lept}}(\mathrm{HC})$	0.23143 ± 0.00025	0.23143 ± 0.00014	0.23147 ± 0.00014	-
$R_{u c}$	0.1660 ± 0.0090	0.172221 ± 0.000034	0.172221 ± 0.000034	0.17162 ± 0.00099

Conclusions

- Remarkable experimental progress in m_{+}and M_{w}, but tensions among measurements present in both cases
- Taken at face value, Mw implies a local (global) discrepancy at the $6.5 \sigma(4.2 \sigma)$ level, calling for NP
- Oblique/decoupling NP can accommodate the tension for scales close to the EW scale if loop-mediated, or at the TeV scale if tree-level/strongly interacting.
- If a more conservative averaging procedure is followed, the tension becomes much milder and the implications on NP much softer.
- Independent measurements of $M_{W}\left(\right.$ and $\left.m_{+}\right)$crucial!

BACKUP

NP fits in the conservative scenario

	Result	Correlation	Result	Correlation	
	$\left(\mathrm{IC}_{\mathrm{ST}} / \mathrm{IC}_{\mathrm{SM}}=24.5 / 37.1\right)$		$\left(\mathrm{IC}_{\mathrm{STU}} / \mathrm{IC}\right.$		
S	0.086 ± 0.077	1.00		0.004 ± 0.096	1.00
T	0.177 ± 0.070	0.89	1.00	0.040 ± 0.120	0.90
U	-	-	-	1.00	
		0.134 ± 0.095	-0.60	-0.81	1.00

NP fits in the conservative

 scenario| | Measurement | ST | STU | SMEFT |
| :---: | :---: | :---: | :---: | :---: |
| $M_{W}[\mathrm{GeV}]$ | 80.413 ± 0.015 | 80.403 ± 0.013 | 80.413 ± 0.015 | 80.413 ± 0.015 |
| $\Gamma_{W}[\mathrm{GeV}]$ | 2.085 ± 0.042 | 2.0916 ± 0.0011 | 2.0925 ± 0.0012 | 2.0778 ± 0.0070 |
| $\sin ^{2} \theta_{\text {eff }}^{\text {lept }}\left(Q_{\mathrm{FB}}^{\mathrm{had}}\right)$ | 0.2324 ± 0.0012 | 0.23143 ± 0.00014 | 0.23147 ± 0.00014 | - |
| $P_{\tau}^{\mathrm{pol}}=\mathcal{A}_{\ell}$ | 0.1465 ± 0.0033 | 0.1478 ± 0.0011 | 0.1474 ± 0.0011 | 0.1488 ± 0.0014 |
| $\Gamma_{Z}[\mathrm{GeV}]$ | 2.4955 ± 0.0023 | 2.4976 ± 0.0012 | 2.4951 ± 0.0022 | 2.4955 ± 0.0023 |
| $\sigma_{h}^{0}[\mathrm{nb}]$ | 41.480 ± 0.033 | 41.4909 ± 0.0077 | 41.4905 ± 0.0077 | 41.482 ± 0.033 |
| R_{ℓ}^{0} | 20.767 ± 0.025 | 20.7507 ± 0.0084 | 20.7512 ± 0.0084 | 20.769 ± 0.025 |
| $A_{\mathrm{FB}}^{0, \ell}$ | 0.0171 ± 0.0010 | 0.01637 ± 0.00023 | 0.01630 ± 0.00024 | 0.01660 ± 0.00032 |
| $\mathcal{A}_{\ell}(\mathrm{SLD})$ | 0.1513 ± 0.0021 | 0.1478 ± 0.0011 | 0.1474 ± 0.0011 | 0.1488 ± 0.0014 |
| R_{b}^{0} | 0.21629 ± 0.00066 | 0.21591 ± 0.00011 | 0.21591 ± 0.00011 | 0.21632 ± 0.00065 |
| R_{c}^{0} | 0.1721 ± 0.0030 | 0.172199 ± 0.000055 | 0.172199 ± 0.000055 | 0.17160 ± 0.00099 |
| $A_{\mathrm{FB}}^{0, b}$ | 0.0996 ± 0.0016 | 0.10359 ± 0.00075 | 0.10337 ± 0.00077 | 0.1009 ± 0.0014 |
| $A_{\mathrm{FB}}^{0,, c}$ | 0.0707 ± 0.0035 | 0.07403 ± 0.00059 | 0.07385 ± 0.00059 | 0.0735 ± 0.0022 |
| \mathcal{A}_{b} | 0.923 ± 0.020 | 0.934807 ± 0.000097 | 0.934779 ± 0.000100 | 0.903 ± 0.013 |
| \mathcal{A}_{c} | 0.670 ± 0.027 | 0.66811 ± 0.00052 | 0.66797 ± 0.00053 | 0.658 ± 0.020 |
| \mathcal{A}_{s} | 0.895 ± 0.091 | 0.935705 ± 0.000096 | 0.935677 ± 0.000097 | 0.905 ± 0.012 |
| $\mathrm{BR}_{W \rightarrow \ell \bar{\nu}_{\ell}}$ | 0.10860 ± 0.00090 | 0.108385 ± 0.000022 | 0.108380 ± 0.000022 | 0.10900 ± 0.00038 |
| $\sin ^{2} \theta_{\text {eff }}^{\text {lept }}(\mathrm{HC})$ | 0.23143 ± 0.00025 | 0.23143 ± 0.00014 | 0.23147 ± 0.00014 | - |
| $R_{u c}$ | 0.1660 ± 0.0090 | 0.172221 ± 0.000034 | 0.172221 ± 0.000034 | 0.17162 ± 0.00099 |

