M_w and the Electroweak Fit in the SM and beyond

> Luca Silvestrini INFN, Rome

- Introduction
- \bullet M_W and the fit to EWPO in the SM
- M_W and the fit to EWPO beyond the SM:
 - Oblique NP
 - Higgs Triplet
 - SMEFT
- Summary and outlook

Based on J. de Blas, M. Pierini, L. Reina & L.S., arXiv:2204.04204 See also ~100 more papers...

INTRODUCTION

- $SU(2)_{L} \times U(1)_{y}$ symmetry hidden at low energies, but restored in the UV
 - tree-level relations among weak couplings and masses corrected by finite and calculable loop corrections
 - precision measurements of masses and couplings
 - test the quantum structure of the SM
 - probe NP through its virtual effects

SYMMETRIES OF THE SM HIGGS SECTOR

In the SM, one Higgs doublet φ w. potential $V(\varphi) = -\frac{\mu^2}{2} |\varphi|^2 + \frac{\lambda}{4} |\varphi|^4 = -\frac{\mu^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\lambda}{4} \operatorname{Tr}(\Phi^{\dagger} \Phi)^2$ with $\Phi \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_0^* & \varphi_+ \\ -\varphi_\perp^* & \varphi_0 \end{pmatrix}$, invariant under $\Phi \to U_L \Phi U_R^{\dagger}$ where $SU(2)_L$ coincides with gauge SU(2), while Y with the third component of $SU(2)_R$. The charge-conserving $\langle \Phi \rangle \equiv \frac{1}{2} \begin{pmatrix} v & 0 \\ 0 & v \end{pmatrix}$ leaves the diagonal SU(2)_v unbroken, ensuring $M_{W_1} = M_{W_2} = M_{W_3}$ and $\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$

SYMMETRIES OF THE SM HIGGS SECTOR

• Promoting right-handed quarks to $SU(2)_R$ doublets, one can write Yukawa couplings in the form

$$\bar{Q}_L \Phi \begin{pmatrix} Y_u & 0\\ 0 & Y_d \end{pmatrix} Q_R$$

which would be $SU(2)_R$ -invariant for $Y_u=Y_d$. Therefore, the tree-level prediction $\rho=1$ gets loop corrections proportional to $G_Fm_t^2$.

EXPERIMENTAL INPUTS

- SM input parameters:
 - G_{F} , α , M_{Z} , M_{H} , m_{t} , $\alpha_{s}(M_{Z})$, $\Delta \alpha_{had}^{(5)}$
- For $\Delta\alpha_{had}^{(5)}$ we use lattice QCD in the Euclidean + perturbative running
- For m_t, "standard" average completely dominated by very recent CMS l+jets measurement: m_t=171.77±0.38 GeV. However, there is a 3.5σ tension with the TeVatron average m_t=174.34±0.64 GeV, so consider also "conservative" average with error inflated to 1 GeV. Notice: PDG recipe would give a "ultra-conservative" 1.7 GeV error.

M_w: New Exp. Average

- Also for M_W , "standard" average completely dominated by very recent CDF measurement.
- Taking systematic errors fully correlated, we obtain M_W =80413.3±8.0 MeV.
- However, also in this case there are tensions between LHC, TeVatron and LEP measurements, so consider also "conservative" average with error inflated à la PDG to 15 MeV

M_w: SM vs EXPERIMENT

Model	Pred. M_W [GeV] Pul	Pred. M_W [GeV] Pull		
	$standard \ average$	conservative average		
SM	80.3499 ± 0.0056 6.5	$\sigma 80.3505 \pm 0.0077 3.7 \sigma$		

- The SM prediction is obtained omitting the experimental information on M_W. Previously, the tension was 1.8σ. Current theory error on M_W in the SM is 4 MeV Awramik et al, '03
- In the "ultra-conservative" scenario for $m_{t},$ the pull is slightly reduced to 3.4σ

Roma Tre Topical Seminar 2022

INTERPLAY OF M_w WITH OTHER OBSERVABLES

standard

conservative

INTERPLAY OF M_w WITH OTHER OBSERVABLES

standard

conservative

Roma Tre Topical Seminar 2022

	Measurement	Posterior	Indirect/Prediction	Pull	Full Indirect	Pull	Full Prediction	Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11762 ± 0.00095	0.11685 ± 0.00278	0.3	0.12181 ± 0.00470	-0.8	$0.1177 \pm 0.00' 0$	_
		[0.11576, 0.11946]	[0.11145, 0.1 33]		[0.1126, 1310]		[0.1157, 0.11]	
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	0.02766 0.00010	0.027535 ± 0.000096	0.026174 ± 0.000334	4.3	0.028005 ± 0.000675	-0.5	0.02766 ± 0.00010	_
nau (–)		[0.027349, 0.027726]	[0.025522, 0.026826]		[0.02667, 0.02932]		[0.02746, 0.02786]	
$M_Z [{\rm GeV}]$	91.1875 ± 0.0021	91.1911 ± 0.0020	91.2314 ± 0.0069 -	-6.1	91.2108 ± 0.0390	-0.6	91.1875 ± 0.0021	—
		[91.1872, 91.1950]	[91.2178, 91.2447]		[91.136, 91.288]		[91.1834, 91.1916]	
$m_t \; [\text{GeV}]$	171.79 ± 0.38	172.36 ± 0.37	181.45 ± 1.40	6.2		-1.7	171.80 ± 0.32	
	-	. ^{71.64,17} Doc	ult of the		[169.1, 206.1]		Dradiction	ucino
$m_H \; [\text{GeV}]$	Experimenta	120.20 1	un of me			-0.9	Prediction	using
	•	124.97.12 C :	not using	_	[100.8, 640.4]		only info or	1.SM
M_W [GeV] V	value used as		-		80.4129 ± 0.0080	0.1		
	nnut).3617.30 the	correspondin	a	[80.3973, 80.4284]		parameters	5
$\Gamma_W [\text{GeV}]$	nput	8903 - 0	•			-0.2		
2 alept (a had)		<u>108800</u> 2. mea	asurement	-	[2.0900, 2.0988]		[2.00021, 2.00000]	
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	0.2324 ± 0.0012	0.231471 = 0			$\begin{array}{c} 0.231460 \pm 0.000138 \\ 0.23110 \ 0.23173 \end{array}$	0.8	0.231558 ± 0.000062	0.7
ppol ($[0.231362 \ 0.231580]$	[0.231361, 0.231578]				[0.231436, 0.231679]	0.1
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0000		0.14744 ± 0.00044	R	esult of the		0.14675 ± 0.00049	-0.1
D [C V]	Re	esult of the	[0.14657, 0.14830]				0.14580, 0.14770]	0.0
$\Gamma_Z \; [\text{GeV}]$	2.4955 ± 0.1		2.49437 ± 0.00068	fi	t not using		2.49397 ± 0.00068	0.6
σ_h^0 [nb]	$41.480 \pm 0.$ 9	obal fit	[2.49301, 2.49569]		•		$\begin{array}{c} 2.49262, 2.49531] \\ 41.4923 \pm 0.0080 \end{array}$	-0.4
σ_h [nd]	$41.480 \pm 0.$	[41.4741, 41.5041]	41.4914 ± 0.0080	ar	ny info on SM		$[41.4923 \pm 0.0080]$ [41.4766, 41.5081]	-0.4
R^0_ℓ	20.767 ± 0.025	[41.4741, 41.5041] 20.7487 ± 0.0080	$\begin{array}{c} [41.4757, 41.5070] \\ 20.7451 \pm 0.0087 \end{array}$	-	, 		20.7468 ± 0.0087	0.7
n_{ℓ}	20.101 ± 0.025	[20.7329, 20.7645]	[20.7281, 20.7621]	pc	arameters		[20.7298, 20.7637]	0.7
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.016300 ± 0.000095	0.016291 ± 0.000096	0.8	0.016316 ± 0.000240	0.8		1.0
TFB	0.0171 ± 0.0010	[0.016111, 0.016487]	[0.016102, 0.016480]	0.0	[0.01585, 0.01679]	0.0	[0.01594, 0.01636]	1.0
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14742 ± 0.00044	0.14745 ± 0.00045	1.8	$\frac{0.14750 \pm 0.00108}{0.14750 \pm 0.00108}$	1.6	$\frac{0.01001, 0.01000]}{0.14675 \pm 0.00049}$	2.1
		[0.14656, 0.14827]	[0.14656, 0.14834]	1.0	[0.1454, 0.1496]	1.0	[0.14580, 0.14770]	
R_b^0	0.21629 ± 0.00066	0.215892 ± 0.000100		0.6	0.215413 ± 0.000364	1.2	0.21591 ± 0.00010	0.6
		[0.215696, 0.216089]	[0.215688, 0.216086]		[0.21469, 0.21611]		[0.21571, 0.21611]	
R_c^0	0.1721 ± 0.0030	0.172198 ± 0.000054	-	-0.1		-0.1		-0.1
0		[0.172093, 0.172302]	[0.172094, 0.172303]		[0.17206, 0.17278]		[0.172084, 0.172295]	
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10335 ± 0.00030		-2.3	0.10338 ± 0.00077	-2.1	0.10288 ± 0.00034	-2.0
		[0.10276, 0.10396]	[0.10275, 0.10400]		[0.10189, 0.10490]		[0.10220, 0.10354]	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07385 ± 0.00023		-0.9		-0.9	0.07348 ± 0.00025	-0.8
		$\left[0.07341, 0.07430 ight]$	$\left[0.07341, 0.07434 ight]$		$\left[0.07275, 0.07507 ight]$		[0.07298, 0.07398]	
\mathcal{A}_b	0.923 ± 0.020	0.934770 ± 0.000039	0.934772 ± 0.000040 -	-0.6		-0.6		-0.6
		[0.934693, 0.934847]	[0.934693, 0.934849]		$\left[0.93426, 0.93491 ight]$		[0.934642, 0.934801]	
\mathcal{A}_{c}	0.670 ± 0.027	0.66796 ± 0.00021	0.66797 ± 0.00021	0.1	0.66817 ± 0.00054	0.1	0.66766 ± 0.00022	0.1
		[0.66754, 0.66838]	[0.66755, 0.66839]		[0.66712, 0.66922]		[0.66722, 0.66810]	
\mathcal{A}_s	0.895 ± 0.091		0.935677 ± 0.000040 -	-0.4		-0.5		-0.5
DD		[0.935600, 0.935755]		0.0	[0.935523, 0.935909]		[0.935541, 0.935702]	0.5
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090	0.108388 ± 0.000022		0.2	0.108291 ± 0.000109	0.3	0.108386 ± 0.000023	0.2
. 2 alert		[0.108345, 0.108431]			[0.10808, 0.10851]		[0.108340, 0.108432]	
$\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC)	0.23143 ± 0.00025	0.231471 ± 0.000055		-0.2		-0.1		-0.5
D	0.4000 1.0.000	[0.231362, 0.231580]	[0.231363, 0.231584]		[0.23119, 0.23173]		[0.231436, 0.231679]	
R_{uc}	0.1660 ± 0.0090		0.172220 ± 0.000032 -	-0.7		-0.7		-0.7
		[0.172159, 0.172282]	[0.172159, 0.172282]		$\left[0.17209, 0.17279 ight]$		[0.172149, 0.172275]	

Roma Tre Topical Seminar 2022

	Measurement	Posterior	Indirect/Prediction	Pull		Pull	Full Prediction	Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11762 ± 0.00095	0.11685 ± 0.00278	0.3		-0.8	0.1177 ± 0.0010	-
		$\left[0.11576, 0.11946 ight]$	[0.11145, 0.12233]		[0.1126, 0.1310]		$\left[0.1157, 0.1197 ight]$	
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	0.02766 ± 0.00010	0.027535 ± 0.000096	0.026174 ± 0.000334	4.3	0.028005 ± 0.000675	-0.5	0.02766 ± 0.00010	_
Autor -		[0.027349, 0.027726]	[0.025522, 0.026826]		$\left[0.02667, 0.02932 ight]$		$\left[0.02746, 0.02786 ight]$	
$M_Z [{\rm GeV}]$	91.1875 ± 0.0021	91.1911 ± 0.0020	91.2314 ± 0.0069	-6.1	91.2108 ± 0.0390	-0.6	91.1875 ± 0.0021	—
		[91.1872, 91.1950]	[91.2178, 91.2447]		[91.136, 91.288]		[91.1834, 91.1916]	
$m_t \; [\text{GeV}]$	171.79 ± 0.38	172.36 ± 0.37	181.45 ± 1.49	-6.3	187.58 ± 9.52	-1.7	171.80 ± 0.38	_
		[171.64, 173.09]	[178.53, 184.42]		[169.1, 206.1]		[171.05, 172.54]	
$m_H \; [\text{GeV}]$	125.21 ± 0.12	125.20 ± 0.12	93.36 ± 4.99	4.3	247.98 ± 125.35	-0.9	125.21 ± 0.12	_
		[124.97, 125.44]	[82.92, 102.89]		[100.8, 640.4]		[124.97, 125.45]	
M_W [GeV]	80.4133 ± 0.0080	80.3706 ± 0.0045	80.3499 ± 0.0056	6.5	80.4129 ± 0.0080	0.1	80.3496 ± 0.0057	6.5
		[80.3617, 80.3794]	[80.3391, 80.3610]		[80.3973, 80.4284]		[80.3386, 80.3608]	
$\Gamma_W \; [\text{GeV}]$	2.085 ± 0.042	2.08903 ± 0.00053	2.08902 ± 0.00052	-0.1	2.09430 ± 0.00224	-0.2	2.08744 ± 0.00059	0.0
		[2.08800, 2.09006]	[2.08799, 2.09005]		[2.0900, 2.0988]		[2.08627, 2.08859]	
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	0.2324 ± 0.0012	0.231471 ± 0.000055		0.8	0.231460 ± 0.000138	0.8	0.231558 ± 0.000062	0.7
		[0.231362, 0.231580]	[0.231361, 0.231578]		$\left[0.23119, 0.23173 ight]$		[0.231436, 0.231679]	
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14742 ± 0.00044	0.14744 ± 0.00044	-0.3	0.14750 ± 0.00108	-0.3	0.14675 ± 0.00049	-0.1
		[0.14656, 0.14827]	[0.14657, 0.14830]		[0.1454, 0.1496]		[0.14580, 0.14770]	
$\Gamma_Z [\text{GeV}]$	2.4955 ± 0.0023	2.49455 ± 0.00065	2.49437 ± 0.00068	0.5	2.49530 ± 0.00204	0.0	2.49397 ± 0.00068	0.6
		[2.49329, 2.49581]	[2.49301, 2.49569]		[2.4912, 2.4993]		[2.49262, 2.49531]	
σ_h^0 [nb]	41.480 ± 0.033	41.4892 ± 0.0077	41.4914 ± 0.0080	-0.3	41.4613 ± 0.0303	0.4	41.4923 ± 0.0080	-0.4
		[41.4741, 41.5041]	[41.4757, 41.5070]		[41.402, 41.521]		[41.4766, 41.5081]	
R^0_ℓ	20.767 ± 0.025	20.7487 ± 0.0080	20.7451 ± 0.0087	0.8	20.7587 ± 0.0217	0.2	20.7468 ± 0.0087	0.7
		[20.7329, 20.7645]	[20.7281, 20.7621]		$\left[20.716, 20.801 ight]$		[20.7298, 20.7637]	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.016300 ± 0.000095	0.016291 ± 0.000096	0.8	0.016316 ± 0.000240	0.8	0.01615 ± 0.00011	1.0
12		[0.016111, 0.016487]	[0.016102, 0.016480]		$\left[0.01585, 0.01679 ight]$		$\left[0.01594, 0.01636 ight]$	
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14742 ± 0.00044	0.14745 ± 0.00045	1.8	0.14750 ± 0.00108	1.6	0.14675 ± 0.00049	2.1
		[0.14656, 0.14827]	[0.14656, 0.14834]		[0.1454, 0.1496]		[0.14580, 0.14770]	
R_b^0	0.21629 ± 0.00066	0.215892 ± 0.000100	0.215886 ± 0.000102	0.6	0.215413 ± 0.000364	1.2	0.21591 ± 0.00010	0.6
		[0.215696, 0.216089]	[0.215688, 0.216086]		$\left[0.21469, 0.21611 ight]$		$\left[0.21571, 0.21611 ight]$	
R_c^0	0.1721 ± 0.0030	0.172198 ± 0.000054	0.172197 ± 0.000054	-0.1	0.172404 ± 0.000183	-0.1	0.172189 ± 0.000054	-0.1
		[0.172093, 0.172302]	[0.172094, 0.172303]		$\left[0.17206, 0.17278 ight]$		[0.172084, 0.172295]	
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10335 ± 0.00030	0.10337 ± 0.00032	-2.3	0.10338 ± 0.00077	-2.1	0.10288 ± 0.00034	-2.0
		$\left[0.10276, 0.10396 ight]$	[0.10275, 0.10400]		$\left[0.10189, 0.10490 ight]$		$\left[0.10220, 0.10354 ight]$	
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07385 ± 0.00023	0.07387 ± 0.00023	-0.9	0.07392 ± 0.00059	-0.9	0.07348 ± 0.00025	-0.8
ГD		[0.07341, 0.07430]	[0.07341, 0.07434]	10.10035	[0.07275, 0.07507]		[0.07298, 0.07398]	
\mathcal{A}_b	0.923 ± 0.020	0.934770 ± 0.000039	0.934772 ± 0.000040	-0.6	0.934593 ± 0.000166	-0.6	0.934721 ± 0.000041	-0.6
		[0.934693, 0.934847]	[0.934693, 0.934849]		[0.93426, 0.93491]		[0.934642, 0.934801]	
\mathcal{A}_{c}	0.670 ± 0.027	0.66796 ± 0.00021	0.66797 ± 0.00021	0.1	0.66817 ± 0.00054	0.1	0.66766 ± 0.00022	0.1
		[0.66754, 0.66838]	[0.66755, 0.66839]		[0.66712, 0.66922]		[0.66722, 0.66810]	
\mathcal{A}_s	0.895 ± 0.091	0.935678 ± 0.000039	0.935677 ± 0.000040	-0.4	0.935716 ± 0.000098	-0.5	0.935621 ± 0.000041	-0.5
		[0.935600, 0.935755]	[0.935599, 0.935754]		[0.935523, 0.935909]		[0.935541, 0.935702]	
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090		0.108388 ± 0.000022	0.2	0.108291 ± 0.000109	0.3	0.108386 ± 0.000023	0.2
e.			[0.108345, 0.108431]		$\left[0.10808, 0.10851 ight]$		[0.108340, 0.108432]	
$\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC)	0.23143 ± 0.00025		0.231474 ± 0.000056	-0.2		-0.1		-0.5
en		[0.231362, 0.231580]	[0.231363, 0.231584]		[0.23119, 0.23173]		[0.231436, 0.231679]	
R_{uc}	0.1660 ± 0.0090		0.172220 ± 0.000032	-0.7		-0.7		-0.7
		[0.172159, 0.172282]			[0.17209, 0.17279]		[0.172149, 0.172275]	

Roma Tre Topical Seminar 2022

Luca Silvestrini

"standard" scenario

	Measurement	Posterior	Indirect/Prediction	Pull	Full Indirect	Pull		Pull
$\alpha_s(M_Z)$	0.1177 ± 0.0010	0.11786 ± 0.00095	0.11930 ± 0.00281	-0.5	0.12174 ± 0.00473	-0.8	0.1177 ± 0.0010	_
		[0.11603, 0.11972]	[0.11371, 0.12482]		$\left[0.1126, 0.1311 ight]$		$\left[0.1157, 0.1197 ight]$	
$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	0.02766 ± 0.00010	0.027614 ± 0.000097	0.026895 ± 0.000394	1.9	0.027987 ± 0.000699	-0.5	0.02766 ± 0.00010	_
		[0.027422, 0.027804]	[0.026123, 0.027677]	_	$\left[0.02661, 0.02935 ight]$		[0.02747, 0.02786]	
$M_Z [\text{GeV}]$	91.1875 ± 0.0021	91.1887 ± 0.0021	91.2227 ± 0.0105	-3.3	91.2111 ± 0.0390	-0.6	91.1875 ± 0.0021	_
		[91.1847, 91.1927]	[91.2024, 91.2434]		[91.135, 91.289]		[91.1834, 91.1916]	
$m_t \; [\text{GeV}]$	171.8 ± 1.0	173.12 ± 0.92	180.10 ± 2.25	-3.3	187.16 ± 9.83	-1.6	171.8 ± 1.0	-
		[171.30, 174.92]	[175.66, 184.55]		[167.9, 206.4]	12. 10.	[169.8, 173.8]	
$m_H \; [\text{GeV}]$	125.21 ± 0.12	125.21 ± 0.12	102.19 ± 9.79	1.9	245.25 ± 125.35	-0.9	125.21 ± 0.12	-
	00.110.1.0.01.5	[124.97, 125.45]	[87.01, 127.30]		[98.1, 640.4]		[124.97, 125.45]	
M_W [GeV]	80.413 ± 0.015	80.3634 ± 0.0068	80.3505 ± 0.0077	3.7	80.4116 ± 0.0146	0.0	80.3497 ± 0.0079	3.7
	2.005 1.0.042	[80.3500, 80.3769]	[80.3355, 80.3655]	0.4	[80.383, 80.440]		[80.3342, 80.3653]	
$\Gamma_W [{\rm GeV}]$	2.085 ± 0.042	2.08859 ± 0.00066	2.08859 ± 0.00066	-0.1	2.09426 ± 0.00245	-0.2	2.08743 ± 0.00073	0.0
. 2 elept (a had)		[2.08731, 2.08988]	[2.08732, 2.08988]		[2.0894, 2.0990]		[2.08601, 2.08889]	
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	0.2324 ± 0.0012	0.231491 ± 0.000059	0.231490 ± 0.000059	0.8	0.231461 ± 0.000136	0.8	0.231558 ± 0.000068	0.7
		[0.231376, 0.231608]	[0.231374, 0.231607]		[0.23119, 0.23173]		[0.231426, 0.231691]	
$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.14725 ± 0.00046	0.14727 ± 0.00047	-0.2	0.14750 ± 0.00108	-0.3	terrori per a source da source per appare de source	-0.1
		[0.14634, 0.14817]	[0.14635, 0.14820]		[0.1454, 0.1496]		[0.14570, 0.14779]	
$\Gamma_Z [{\rm GeV}]$	2.4955 ± 0.0023	2.49453 ± 0.00066	2.49434 ± 0.00070	0.5	2.49528 ± 0.00205	0.1	2.49396 ± 0.00072	0.6
0	11 100 1 0 000	[2.49324, 2.49584]	[2.49295, 2.49572]	0.4	[2.4912, 2.4993]	0.1	[2.49257, 2.49538]	0.4
σ_h^0 [nb]	41.480 ± 0.033	41.4908 ± 0.0077	41.4929 ± 0.0080	-0.4	41.4616 ± 0.0304	0.4	41.4924 ± 0.0080	-0.4
DU	00 505 1 0 005	[41.4757, 41.5059]	[41.4772, 41.5087]	0.0	[41.402, 41.522]	0.0	[41.4767, 41.5083]	0.0
R^0_ℓ	20.767 ± 0.025	20.7491 ± 0.0080	20.7458 ± 0.0086	0.8	20.7589 ± 0.0218	0.2	20.7470 ± 0.0087	0.8
40.l	0.0171 0.0010	[20.7333, 20.7649]	[20.7287, 20.7627]	0.0	[20.716, 20.802]	0.0	[20.7297, 20.7638]	1.0
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01626 ± 0.00010	0.01625 ± 0.00010	0.8	0.01631 ± 0.00024	0.8		1.0
4 (CLD)	0.1510 0.0001	[0.01606, 0.01647]	[0.01605, 0.01646]	1.0	[0.01585, 0.01679]	1.0	[0.01592, 0.01638]	2.1
\mathcal{A}_{ℓ} (SLD)	0.1513 ± 0.0021	0.14725 ± 0.00046	0.14728 ± 0.00049	1.9	0.14750 ± 0.00108	1.6		2.1
R_b^0	0.21629 ± 0.00066	[0.14634, 0.14817]	[0.14632, 0.14824]	0.7	[0.1454, 0.1496]	1.2	[0.14570, 0.14779]	0.6
κ_b	0.21029 ± 0.00000	$\begin{array}{c} 0.21587 \pm 0.00010 \\ [0.21566, 0.21607] \end{array}$	0.21586 ± 0.00011	0.7	$\begin{array}{c} 0.21542 \pm 0.00037 \\ [0.21467, 0.21613] \end{array}$	1.2	$\begin{array}{c} 0.21591 \pm 0.00011 \\ [0.21570, 0.21611] \end{array}$	0.0
R_c^0	0.1721 ± 0.0030	[0.21300, 0.21007] $[0.172210 \pm 0.000054]$	$\begin{bmatrix} 0.21565, 0.21607 \\ 0.172210 \pm 0.000054 \end{bmatrix}$	0.0		0.1	0.172190 ± 0.000055	0.1
n_c	0.1721 ± 0.0030	[0.172102, 0.172316]	[0.172103, 0.172317]	0.0	[0.17205, 0.17277]	-0.1	[0.172082, 0.172297]	-0.1
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	$\begin{bmatrix} 0.172102, 0.172310 \end{bmatrix} \\ 0.10324 \pm 0.00033 \end{bmatrix}$	0.10325 ± 0.00035	-2.2	$[0.17203, 0.17277] \\ 0.10338 \pm 0.00076$	-2.1	$\begin{bmatrix} 0.172082, 0.172297 \\ 0.10287 \pm 0.00037 \end{bmatrix}$	2.0
AFB	0.0990 ± 0.0010	$[0.10324 \pm 0.00033]$	$[0.10323 \pm 0.00033]$	-2.2	[0.10188, 0.10489]	-2.1	$[0.10287 \pm 0.00037]$ [0.10214, 0.10361]	-2.0
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	0.07377 ± 0.00024	0.07377 ± 0.00026	-0.9	$\frac{[0.10133, 0.10439]}{0.07391 \pm 0.00059}$	-0.9		-0.8
$A_{\rm FB}$	0.0707 ± 0.0035	[0.07328, 0.07425]	[0.07327, 0.07428]	-0.9	[0.07275, 0.07507]	-0.9	$[0.07348 \pm 0.00028]$ [0.07293, 0.07403]	-0.8
\mathcal{A}_b	0.923 ± 0.020	0.934746 ± 0.000040	0.934746 ± 0.000040	-0.6		-0.6	0.934721 ± 0.000041	-0.6
\mathcal{A}_b	0.520 ± 0.020	[0.934668, 0.934825]	[0.934668, 0.934826]	0.0	[0.93426, 0.93492]	0.0	[0.934640, 0.934802]	0.0
\mathcal{A}_{c}	0.670 ± 0.027	$\begin{bmatrix} 0.554000, 0.554020 \end{bmatrix} \\ 0.66789 \pm 0.00023 \end{bmatrix}$	0.66789 ± 0.00023	0.1	$\frac{[0.55420, 0.55452]}{0.66816 \pm 0.00054}$	0.1	0.66766 ± 0.00024	0.1
	0.010 ± 0.021	[0.66743, 0.66834]	[0.66743, 0.66835]	0.1	[0.66712, 0.66922]	0.1	[0.66718, 0.66814]	0.1
\mathcal{A}_s	0.895 ± 0.091		0.935663 ± 0.000043	-0.4		-0.5	0.935622 ± 0.000045	-0.5
	0.000 ± 0.001	[0.935580, 0.935746]	[0.935580, 0.935746]	0.1	[0.935522, 0.935909]	0.0	[0.935533, 0.935709]	0.0
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090	0.108382 ± 0.000022		0.2	0.108293 ± 0.000110	0.3	0.108386 ± 0.000023	0.2
$=$ $ vv \rightarrow cv\ell$		[0.108339, 0.108425]	[0.108339, 0.108425]		[0.10808, 0.10851]	0.0	[0.108340, 0.108432]	
$\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC)	0.23143 ± 0.00025		-	-0.2		-0.1		-0.5
ett (110)	5.20110 ± 0.00020	[0.231376, 0.231608]	[0.231376, 0.231616]	0.2	[0.23119, 0.23173]	0.1	[0.231426, 0.231691]	0.0
R_{uc}	0.1660 ± 0.0090	L /	0.172231 ± 0.000033	-0.7		-0.7	0.172211 ± 0.000034	-0.7
	0.1000 ± 0.0000		[0.172168, 0.172296]	5.1	[0.17208, 0.17279]	0.1	[0.172145, 0.172277]	0.1

Roma Tre Topical Seminar 2022

Luca Silvestrini

"conservative" scenario

LOCAL vs GLOBAL SIGNIFICANCE

- Considering the whole set of EWPO, what is the global agreement with the SM?
- Compute global p-value of the "full prediction", taking into account experimental and theoretical correlations:
 - $p=2.45 \ 10^{-5}$, i.e. 4.2σ (standard scenario)
 - p=0.10, i.e. 1.6σ (conservative scenario)
 - p=0.18, i.e. 1.4σ (ultra-conservative scenario)

M_w BEYOND THE SM

- Add heavy NP that decouples, leaving its virtual footprints:
 - dominantly in gauge Boson propagators: "oblique" NP
 - an interesting example: Y=O Higgs triplet
 - in the complete set of gauge-invariant dimension six operators (SMEFT)
- For more models (Z', composite Higgs, etc.) see e.g. Strumia '22

OBLIQUE NP

• Assume NP dominant contribution is in gauge Boson propagators:

$$S = -16\pi \Pi_{30}^{\text{NP'}}(0) = 16\pi \left[\Pi_{33}^{\text{NP'}}(0) - \Pi_{3Q}^{\text{NP'}}(0)\right],$$
$$T = \frac{4\pi}{s_W^2 c_W^2 M_Z^2} \left[\Pi_{11}^{\text{NP}}(0) - \Pi_{33}^{\text{NP}}(0)\right],$$
$$U = 16\pi \left[\Pi_{11}^{\text{NP'}}(0) - \Pi_{33}^{\text{NP'}}(0)\right]$$

- EWPO are modified as follows:
 - $\delta \Gamma_{\mathsf{Z}} \propto -10(3 8s_W^2) S + (63 126s_W^2 40s_W^4) T$

$$- \delta M_W, \, \delta \Gamma_W \propto S - 2c_W^2 T - \frac{(c_W^2 - s_W^2) U}{2s_W^2}$$

- all other observables: $S - 4c_W^2 s_W^2 T$

Roma Tre Topical Seminar 2022

OBLIQUE NP: U=0

OBLIQUE NP: RESULTS

• Compare models using the Information Criterion:

$$IC \equiv -2\overline{\log \mathcal{L}} + 4\sigma_{\log \mathcal{L}}^2$$

	Result	Correlation	Result	Correlation	
	$(IC_{ST}/IC_{SM} =$	= 25.0/80.2)	$(IC_{STU}/IC_{SM} = 25.3/80.2)$		
	0.100 ± 0.073		0.005 ± 0.096	1.00	
T	0.202 ± 0.056	0.93 1.00	0.040 ± 0.120	0.91 1.00	
U	—		0.134 ± 0.087	-0.65 -0.88 1.00	

• No significant gain in IC for $U \neq 0$

Model	Pred. M_W [GeV]	Pull	Pred.	$M_W \; [{\rm GeV}]$	Pull
	standard avera	ige	con	$servative \ ave$	rage
SM	80.3499 ± 0.0056	6.5σ	80.35	05 ± 0.0077	3.7σ
ST	80.366 ± 0.029	1.6σ	80.3	67 ± 0.029	1.4σ
STU	80.32 ± 0.54	0.2σ	80.	32 ± 0.54	0.2σ

Roma Tre Topical Seminar 2022

The Higgs Triplet Model

- Adding a Higgs Triplet with hypercharge Y=0 breaks custodial symmetry at tree level.
- Denoting by H the SM Higgs doublet and by $\Phi = \tau^a \phi^a/2$ the triplet, the tree-level masses are $M_Z^2 = \frac{1}{4}(g_2^2 + g_y^2)v_H^2$ and $M_W^2 = \frac{1}{4}g_2^2v_H^2 + g_2^2v_{\phi}^2$
- Current data require v_{ϕ} ~3GeV

The Higgs Triplet Model

Most general Higgs potential is

 $V = m_H^2 H^{\dagger} H + \frac{\lambda_H}{4} \left(H^{\dagger} H \right)^2 + m_{\phi}^2 \operatorname{tr} \left(\Phi^2 \right) + \frac{\lambda_{\phi}}{4} \left(\operatorname{tr} \Phi^2 \right)^2 + \kappa H^{\dagger} H \operatorname{tr} \left(\Phi^2 \right) + \mu H^{\dagger} \Phi H$

• For large m_{ϕ} , at tree-level the triplet vev is

$$\frac{v_{\phi}}{v_H} = \frac{\mu v_H}{4m_{\phi}^2}$$

• for $\mu \ll m_{\phi}$, decoupling limit: tree-level and loop contributions suppressed by $1/m_{\phi}^2$; e.g. for $\mu \sim v_H$ one needs $m_{\phi} \sim \text{TeV}$

The Higgs Triplet Model

- for $\mu \sim m_{\phi}$ non-decoupling induced by the dimensionful coupling μ : everything vanishes as $1/m_{\phi}^2$ except for the loop corrections to the triplet vev, which induce a nonvanishing v_{ϕ} , i.e. a nonvanishing T and nothing else!
 - Notice: this (non)decoupling becomes evident only in a "hybrid" scheme in which one uses as input α , G_F and M_Z and computes all other observables in terms of v_{ϕ} Chankowski et al. '06
- Unitarity of WW scattering gives an upper bound on triplet masses: $2\sqrt{\pi}v_{T}^2$

 $m_{\phi} \lesssim rac{2\sqrt{\pi}v_{H}^{2}}{v_{\phi}} \sim 70 \,\mathrm{TeV}$ Chivukula et al. '07

Roma Tre Topical Seminar 2022

THE SMEFT

- Most general gauge-invariant Lagrangian built with SM fields up to dimension d (here d=6)
- Some relevant operators in the "Warsaw basis": $\mathcal{O}_{\mu}^{(1)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\overline{l}_{I} \gamma^{\mu} l_{I}).$

$$\mathcal{O}_{\phi WB} = (\phi^{\dagger} \sigma_{i} \phi) W^{i}_{\mu\nu} B^{\mu\nu} , \quad \longrightarrow \mathsf{S}$$
$$\mathcal{O}_{\phi D} = (\phi^{\dagger} D^{\mu} \phi)^{*} (\phi^{\dagger} D_{\mu} \phi) , \quad \longrightarrow \mathsf{T}$$
$$\mathcal{O}_{ll} = (\overline{l_{L}} \gamma^{\mu} l_{L}) (\overline{l_{L}} \gamma^{\mu} l_{L})$$

$$\begin{aligned} \mathcal{O}_{\phi l}^{(1)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{l}_{L} \gamma^{\mu} l_{L}) , \\ \mathcal{O}_{\phi l}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{i} \phi) (\bar{l}_{L} \sigma_{i} \gamma^{\mu} l_{L}) , \\ \mathcal{O}_{\phi e} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{e}_{R} \gamma^{\mu} e_{R}) , \\ \mathcal{O}_{\phi q}^{(1)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{q}_{L} \gamma^{\mu} q_{L}) , \\ \mathcal{O}_{\phi q}^{(3)} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{q}_{L} \sigma_{i} \gamma^{\mu} q_{L}) , \\ \mathcal{O}_{\phi u} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{u}_{R} \gamma^{\mu} u_{R}) , \\ \mathcal{O}_{\phi d} &= (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{d}_{R} \gamma^{\mu} d_{R}) , \end{aligned}$$

M_w IN THE SMEFT

• Eight independent combinations of dim. 6 operators contribute to EWPO. In the Warsaw basis: $\hat{C}_{\varphi f}^{(1)} = C_{\varphi f}^{(1)} - \frac{Y_f}{2}C_{\varphi D}, \quad f = l, q, e, u, d,$ (6)

$$\hat{C}_{\varphi f}^{(3)} = C_{\varphi f}^{(3)} + \frac{c_w^2}{4s_w^2} C_{\varphi D} + \frac{c_w}{s_w} C_{\varphi WB}, \quad f = l, q, \quad (7)$$

$$\hat{C}_{ll} = \frac{1}{2}((C_{ll})_{1221} + (C_{ll})_{2112}) = (C_{ll})_{1221}, \quad (8)$$

• Again, one independent combination enters only M_W and Γ_w , namely: $\hat{c}_{\varphi l}^{(3)} - \hat{c}_{ll}/2$; very loose prediction for M_W from Γ_w

Model	Pred. M_W [GeV] Pull	Pred. M_W [GeV] Pull	
	standard ave	erage	conservative average		
SMEFT	80.66 ± 1.68	-0.1σ	80.66 ± 1.68	-0.1σ	

SMEFT: FIT RESULTS

Cirigliano et al. noted that a combination of these operators also contributes to first-row CKM unitarity violation. This effect can be compensated by C⁽³⁾_{Iq} which does not enter EWPO. However, C⁽³⁾_{Iq} can be constrained by LHC e.g. in pp→II.

EWPO BEYOND THE SM

	1			
	Measurement	ST	STU	SMEFT
$M_W [\text{GeV}]$	80.413 ± 0.015	80.403 ± 0.013	80.413 ± 0.015	80.413 ± 0.015
$\Gamma_W \; [\text{GeV}]$	2.085 ± 0.042	2.0916 ± 0.0011	2.0925 ± 0.0012	2.0778 ± 0.0070
$\sin^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	0.2324 ± 0.0012	0.23143 ± 0.00014	0.23147 ± 0.00014	_
$P_{ au}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0014
$\Gamma_Z [{ m GeV}]$	2.4955 ± 0.0023	2.4976 ± 0.0012	2.4951 ± 0.0022	2.4955 ± 0.0023
$\sigma_h^0~[{ m nb}]$	41.480 ± 0.033	41.4909 ± 0.0077	41.4905 ± 0.0077	41.482 ± 0.033
R_ℓ^0	20.767 ± 0.025	20.7507 ± 0.0084	20.7512 ± 0.0084	20.769 ± 0.025
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01637 ± 0.00023	0.01630 ± 0.00024	0.01660 ± 0.00032
$\mathcal{A}_\ell~(\mathrm{SLD})$	0.1513 ± 0.0021	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0014
R_b^0	0.21629 ± 0.00066	0.21591 ± 0.00011	0.21591 ± 0.00011	0.21632 ± 0.00065
R_c^0	0.1721 ± 0.0030	0.172199 ± 0.000055	0.172199 ± 0.000055	0.17160 ± 0.00099
$A_{ m FB}^{0,b}$	0.0996 ± 0.0016	0.10359 ± 0.00075	0.10337 ± 0.00077	0.1009 ± 0.0014
$A_{ m FB}^{ar 0, ar c}$	0.0707 ± 0.0035	0.07403 ± 0.00059	0.07385 ± 0.00059	0.0735 ± 0.0022
\mathcal{A}_b	0.923 ± 0.020	0.934807 ± 0.000097	0.934779 ± 0.000100	0.903 ± 0.013
\mathcal{A}_{c}	0.670 ± 0.027	0.66811 ± 0.00052	0.66797 ± 0.00053	0.658 ± 0.020
\mathcal{A}_s	0.895 ± 0.091	0.935705 ± 0.000096	0.935677 ± 0.000097	0.905 ± 0.012
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090	0.108385 ± 0.000022	0.108380 ± 0.000022	0.10900 ± 0.00038
$\sin^2 \theta_{\rm eff}^{ m lept}$ (HC)	0.23143 ± 0.00025	0.23143 ± 0.00014	0.23147 ± 0.00014	_
\overline{R}_{uc}	0.1660 ± 0.0090	0.172221 ± 0.000034	0.172221 ± 0.000034	0.17162 ± 0.00099

Roma Tre Topical Seminar 2022

Conclusions

- Remarkable experimental progress in m_{t} and M_{W} , but tensions among measurements present in both cases
- Taken at face value, M_W implies a local (global) discrepancy at the 6.5 σ (4.2 σ) level, calling for NP
- Oblique/decoupling NP can accommodate the tension for scales close to the EW scale if loop-mediated, or at the TeV scale if tree-level/strongly interacting.
- If a more conservative averaging procedure is followed, the tension becomes much milder and the implications on NP much softer.
- Independent measurements of M_W (and m_t) crucial!

Roma Tre Topical Seminar 2022

NP fits in the conservative scenario

	Result	Correlation	Result	Correlation	
	$(IC_{ST}/IC_{SM} =$	= 24.5/37.1)	$(IC_{STU}/IC_{SM} = 25.3/37.1)$		
	0.086 ± 0.077		0.004 ± 0.096	1.00	
T	0.177 ± 0.070	0.89 1.00	0.040 ± 0.120	0.90 1.00	
U	—		0.134 ± 0.095	-0.60 -0.81 1.00	

	Result	Correlation Matrix				
$\hat{C}^{(1)}_{\varphi l}$	-0.007 ± 0.012	1.00				
$ \hat{C}_{\varphi l}^{(1)} \\ \hat{C}_{\varphi l}^{(3)} \\ \hat{C}_{\varphi e} $	-0.042 ± 0.018	-0.44 1.00				
$\hat{C}_{arphi e}$	-0.017 ± 0.010	0.52 0.31 1.00				
		$-0.02 \ -0.05 \ -0.12 \ 1.00$				
		$0.02 0.14 \ -0.02 \ -0.36 1.00$				
$\hat{C}_{\varphi u}$	0.090 ± 0.150	0.05 - 0.04 0.02 0.61 - 0.76 1.00				
$C_{\varphi d}$	-0.630 ± 0.250	$-0.13 \ -0.04 \ -0.25 \ 0.40 \ 0.57 \ -0.04 \ 1.00$				
\hat{C}_{ll}		-0.72 0.89 0.01 -0.06 0.03 -0.04 -0.05 1.00)			

NP fits in the conservative scenario

	Measurement	ST	STU	SMEFT
$M_W [{ m GeV}]$	80.413 ± 0.015	80.403 ± 0.013	80.413 ± 0.015	80.413 ± 0.015
$\Gamma_W [{ m GeV}]$	2.085 ± 0.042	2.0916 ± 0.0011	2.0925 ± 0.0012	2.0778 ± 0.0070
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.23143 ± 0.00014	0.23147 ± 0.00014	_
$P_{ au}^{\mathrm{pol}} = \mathcal{A}_{\ell}$	0.1465 ± 0.0033	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0014
$\Gamma_Z [{\rm GeV}]$	2.4955 ± 0.0023	2.4976 ± 0.0012	2.4951 ± 0.0022	2.4955 ± 0.0023
$\sigma_h^0~[{ m nb}]$	41.480 ± 0.033	41.4909 ± 0.0077	41.4905 ± 0.0077	41.482 ± 0.033
R^0_ℓ	20.767 ± 0.025	20.7507 ± 0.0084	20.7512 ± 0.0084	20.769 ± 0.025
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.01637 ± 0.00023	0.01630 ± 0.00024	0.01660 ± 0.00032
$\mathcal{A}_\ell~(\mathrm{ar{SLD}})$	0.1513 ± 0.0021	0.1478 ± 0.0011	0.1474 ± 0.0011	0.1488 ± 0.0014
R_b^0	0.21629 ± 0.00066	0.21591 ± 0.00011	0.21591 ± 0.00011	0.21632 ± 0.00065
R_c^0	0.1721 ± 0.0030	0.172199 ± 0.000055	0.172199 ± 0.000055	0.17160 ± 0.00099
$A_{\rm FB}^{0,b}$	0.0996 ± 0.0016	0.10359 ± 0.00075	0.10337 ± 0.00077	0.1009 ± 0.0014
$A_{ m FB}^{ar 0, ar c}$	0.0707 ± 0.0035	0.07403 ± 0.00059	0.07385 ± 0.00059	0.0735 ± 0.0022
$ar{\mathcal{A}}_b^-$	0.923 ± 0.020	0.934807 ± 0.000097	0.934779 ± 0.000100	0.903 ± 0.013
\mathcal{A}_{c}	0.670 ± 0.027	0.66811 ± 0.00052	0.66797 ± 0.00053	0.658 ± 0.020
\mathcal{A}_{s}	0.895 ± 0.091	0.935705 ± 0.000096	0.935677 ± 0.000097	0.905 ± 0.012
$\mathrm{BR}_{W \to \ell \bar{\nu}_{\ell}}$	0.10860 ± 0.00090	0.108385 ± 0.000022	0.108380 ± 0.000022	0.10900 ± 0.00038
$\sin^2 \theta_{ m eff}^{ m lept}$ (HC)	0.23143 ± 0.00025	0.23143 ± 0.00014	0.23147 ± 0.00014	_
\widetilde{R}_{uc}	0.1660 ± 0.0090	0.172221 ± 0.000034	0.172221 ± 0.000034	0.17162 ± 0.00099

Roma Tre Topical Seminar 2022