Theoretical activities supporting the experiments at LNS

Istituto Nazionale di Fisica Nucleare

Danilo Gambacurta

(On behalf of the LNS theoretical group) Laboratori Nazionali del Sud (Catania)

LNS Users Annual Meeting – 19.12.2022

Research activities within the INFN "Specific Initiatives"

MONSTRE: MOdeling Nuclear STructure and REactions

SIM: Strongly Interacting Matter at high density and temperature

SIM: Strongly Interacting Matter at high temperature and density

Phenomenology of Quark Gluon Plasma with Transport Theories

- **Hadronization mechanisms**
- **Heavy quark dynamics: charm and bottom**
- **Non-equilibrium dynamics in AA, pA and pp collisions**

Ref. Prof. V. Greco

Research activities within the INFN "Specific Initiatives"

MONSTRE: MOdeling Nuclear STructure and REactions

SIM: Strongly Interacting Matter at high density and temperature

Theoretical Models and Techniques

Energy Density Functional(EDF) Framework (Skyrme-Gogny)

HF, HF+BCS, HFB (ground state and low lying spectroscopy)

RPA, QRPA, Second RPA, TDHF (nuclear response and excitations)

Spherical and Deformed, also superfluid, systems can be studied

Transport theories based on EDF

Main Physical Cases of Interest

Collective nuclear excitations, especially in neutron-rich and exotic nuclei (Giant Resonances, Pygmy Dipole Resonance, ...)

EoS of asymmetric matter (symmetry energy, ...)

Charge exchange excitations (Gamow-Teller, Fermi, etc,)

Beta Decay (single and double, with or without neutrinos)

Interdisciplinary aspects between nuclear and neutrino physics

Proton – Neutron pairing in Z~N nuclei

Theoretical Models and Techniques

Semi-classical transport theories, incorporating many-body correlations DWBA and/or coupled channel calculations

Formulation of scattering theory for double Charge Exchange (CE) Reactions

Main Physical Cases of Interest

- *Nuclear reactions at Fermi/intermediate energies*
- *Direct reaction (transfer, charge exchange, probing spin-isospin channels)*
- **Fragmentation reactions, also for medical applications**
- *Impact of Eos on nuclear reactions*
- *Double Charge Excitations and the connection to double beta decay*
- *Reactions of astrophysics interest (light systems, cluster structures)*

A (few) recent Applications and Studies

\bigcirc 20fm

Reaction dynamics in semi-classical stochastic approaches

Transport Model Evaluation Project

Box simulations: test of mean-field dynamics

 \triangleright Sinusoidal perturbation: $p(z,t=t_0)=p_0 + a_\rho \sin(kz)$

 $k = 2\pi/L$, $L = 20$ fm $a_{0} = 0.2 \rho_{0}$

 Fermi sphere defined as a function of the local density

 Symmetric matter zero temperature • Only mean-field potential

- No surface terms
- Compressibility K = 500 MeV

Simulations: 200 runs for QMD-like codes $M.$ Colonna et al., PRC 104, 024603 (2021) **10** runs for BUU-like codes, with $N_{TP} = 100$

Results of all codes

 Differences between **BUU** codes are compatible with different treatment of kinematics and/or mean-field

QMD codes:

 - frequency affected by less repulsive many-body term

- (can be cured with Lattice method)
- large damping effects

M.Colonna et al., **PRC 104, 024603 (2021)**

Theoretical part of NUMEN project (Resp. M. Colonna)

For *single charge exchange* (**SCE**) Nuclear Reactions are a well tested approach to probe single b decay… MAGNEX at LNS allow to access *double charge exchange* (**DCE**)

A Constrained Analysis of the ⁴⁰Ca(¹⁸O,¹⁸F)⁴⁰K Direct Charge Exchange Reaction Mechanism at 275 MeV, M. Cavallaro et al. Frontiers in Aston. And Space Sci. 8, 659815 (2021)

\triangleright DSCE Cross Section - ⁴⁰Ca(¹⁸O,¹⁸Ne_{g.s.})⁴⁰Ar_{g.s.}

*H. Lenske, J.I. Bellone, M. Colonna, D. Gambacurta***, Universe 7 (2021) 4, 98**

J.I.Bellone et al., **PLB 807 (2020) 135528**

s-channel (approx)

DCE reactions by double meson exchange: MDCE

DWBA reaction calculations for light systems for astrophysics studies

Goal

Study the influence of ground-state ("static") structure on the reaction dynamics in a fully quantum framework.

- Explicit evaluation of the cross-section in terms of the properties and interactions of reactants.
- No adjusting on reaction experimental data.

Study of 6 Li + p $\rightarrow \alpha + {}^{3}$ He transfer, focus on 6 Li structure. • Two-cluster models: $|^{6}$ Li $\overline{\bullet}$) = $|\alpha d \overline{\bullet}$ 3

Process dominated by quantum tunnelling of the Coulomb barrier.

Astrophysical S-factor:

$$
S(E) = E e^{2\pi \eta(E)} \sigma(E) \quad , \quad \eta(E) = \alpha_e Z_1 Z_2 \sqrt{\frac{\mu c^2}{2E}}
$$

(σ angle-integrated cross-section, E center-of-mass collision energy, Z_i reactants charge number, α_e fine-structure constant, μ reactants reduced mass, c speed of light).

${}^{6}\text{Li} + \text{p} \rightarrow {}^{3}\text{He} + \alpha$: deuteron transfer

Models usually underestimate The low-energy part which Is important for astrophysical studies

S. Perrotta, M. Colonna and J.A. Lay in preparation

PHYSICAL REVIEW C 105, 034325 (2022)

Proton-neutron pairing and binding energies of nuclei close to the $N = Z$ line

D. Negrea^o and N. Sandulescu¹ National Institute of Physics and Nuclear Engineering, 077125 Măgurele, Romania

> D. Gambacurta^o INFN-LNS, Laboratori Nazionali del Sud, 95123 Catania, Italy

(Received 1 November 2021; accepted 18 February 2022; published 23 March 2022)

- **BCS description fails!!!**
- We developed a new approach to treat all the pairing channels consistently
- Quartet Condensate Model (QCM) preserves particle and isospin symmetries
- Skyrme HF plus QCM calculations along all the nuclear chart 20<A<100, including deformation
- Better agreement with data than HF plus BCS

• pp and nn pairing is well understood (BCS) p-n pairing not clear and very much studied both th. and exp.

nuclei as a function of $A = N + Z$. The results correspond to the pairing forces and the approximations indicated in the figure.

- Isovector and isoscalar p-n pairing coexist but the isoscalar one is typically much weaker
- Next step: QCM in pair or alpha transfer

PHYSICAL REVIEW LETTERS 125, 212501 (2020)

Gamow-Teller Strength in ^{48}Ca and ^{78}Ni with the Charge-Exchange **Subtracted Second Random-Phase Approximation**

D. Gambacurta^{o, 1} M. Grasso^o, 2 and J. Engel^{o3}

FIG. 4. (a) Cumulative sum for different models (see legend and text) for the nucleus ⁷⁸Ni; (b) β -decay half-life for ⁷⁸Ni predicted by SSRPA, compared with predictions of other models and the experimental value [58]. The yellow band represents the experimental uncertainty.

- **Extension to treat Charge Exchange Excitations**
- **Open problem**: Models need quenching factor (~0.7) to reproduce data
- First application where **2p2h configurations** are introduced (together with 1p1h)
- Agreement with data **without** *ad hoc* quenching factor

PHYSICAL REVIEW C 105, 014321 (2022)

Quenching of Gamow-Teller strengths and two-particle–two-hole configurations

Danilo Gambacurta^{o¹} and Marcella Grasso^{o²} ¹INFN-LNS, Laboratori Nazionali del Sud, 95123 Catania, Italy ²Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

Comparison with *Ab initio* results including two body currents

Calculations for heavy for heavy nuclei: 90Zr and 132Sn

Quality of approximated schemes for future studies

Implications for NME in **neutrino-less double-β decay** and **NUMEN project**

FIG. 6. (a) GT⁻ SSRPA and RPA folded spectra obtained with the Skyrme interaction SGII for the nucleus $90Zr$. The experimental results Ref. $[28]$ are also shown. (b) Strengths of panel (a) integrated up to 25 MeV. (c) Same as in (a) but for the nucleus 132 Sn. The experimental results are extracted from Ref. [29]. (d) Strengths of panel (c) integrated up to 20 MeV.

FIG. 1. (a) GT^- strengths obtained with the Skyrme interaction SGII for the nucleus ${}^{48}Ca$ in MeV⁻¹. Experimental data are extracted from Ref. [7]. RPA and all SSRPA strengths are obtained by folding with a Lorentzian having a width of 1 MeV. (b) Cumulative sum of the strength up to the excitation energy of 20 MeV. See text for more details.

Thank you

Nuclear Structure: Main Physical Cases of Interest Collective nuclear excitations, especially in neutron-rich and exotic nuclei (Giant Resonances, Pygmy Dipole Resonance, ...) EoS of asymmetric matter (symmetry energy, ...) Charge exchange excitations (Gamow-Teller, Fermi, etc,) Beta Decay (single and double, with or without neutrinos) Interdisciplinary aspects between nuclear and neutrino physics Proton – Neutron pairing in Z~N nuclei

Nuclear Reactions: Main Physical Cases of Interest Nuclear reactions at Fermi/intermediate energies Direct reaction (transfer, charge exchange, probing spin-isospin channels) **Fragmentation reactions,** also for medical applications

Impact of Eos on nuclear reactions

Double Charge Excitations and the connection to double beta decay

Reactions of astrophysics interest (light systems, cluster structures)

Gruppo IV - LNS

- •
-
-
-
-
-
-
-
-
-
-
-

Stefano Burrello Ricercatore INFN (dal 1.11.2022)

• Colonna Maria Dirigente di Ricerca [20% in CS3]

• Gambacurta Danilo Primo ricercatore Ricercatore [20% in CS3]

• Greco Vincenzo Professore Ordinario (Inc. Ric.) [10% in CS2] Salvatore Plumari **Prof. Associato, UniCT**

• Vincenzo Minissale Assegnista di Ricerca • Jessica Bellone Assegnista di Ricerca NURE • Simone Perrotta Assegnista di Ricerca • Maria Lucia Sambataro Assegnista di Ricerca UnicT

• Angelo Asta Dottorando II anno

• Adriele Arena Laureando (laurea 15 Luglio 2022) • Vincenzo Nugara Laureando (Ottobre 2022)

FTF INFN: $~10$

An elephant in the liquid: Heavy Charm Quark

QGP composto al 99% da g e q=u,d,s, **m^q ≈ 10 MeV** + qualche Charm Quarks: **M^c ≈ 1400 MeV**

 \rightarrow Poorly dragged & long thermalization time (!?)

$$
\tau_{\text{C,therm}} \approx O(10^2) >> \tau_{\text{QGP}} >> \tau_{\text{q,therm}} \approx O(1) \text{ fm/c}
$$

Moto Browniano

Drag Diffusion

Tempo di termalizzazione e coefficiente Diffusione

$$
\tau_{th} = \frac{M}{2\pi T^2} (2\pi T D_s) \approx 1.8 \frac{2\pi T D_s}{(T/T_c)^2} \text{ fm/c}
$$

$$
\Gamma_{\text{coll}} \approx D_{\text{s}}^{-1} \approx 0.5\text{-}1 \text{ GeV} \approx M_{\text{q,g}}(T)
$$

barely quasi-particle states

Not a model fit to lQCD data! Phenomenology ≈ lattice QCD

Strong fields in relativistic nuclear collisions

✓ HUGE ANGULAR MOMENTUM GENERATING A STRONG VORTICITY

tornado cores $\sim 10^{-1}$ s⁻¹

Jupiter's spot $\sim 10^{-4}$ s⁻¹

He nanodroplets urHICs $\sim 10^7 \text{ s}^{-1}$ $\sim 10^{22} - 10^{23} \text{ s}^{-1}$

\checkmark INTENSE ELECTROMAGNETIC FIELDS (EMF)

