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rgiectron Ion Collider

A precision tool to study the glue that binds visible matter
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How does the mass of the nucleon arise?

What are the emergent properties of
dense systems of gluons?
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ID with Cherenkov: EIC exa e
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“Simulations show that in order to satisfy the physics goals of the EIC, it is desirable to
provide nt/K identification

in the hadron-going endcap one would need to reach ~50 GeV/c”, from the
“Electron-lon Collider Detector Requirements and R&D Handbook”, January 10, 2019

e Cherenkov detectors form the backbone of PID at EIC

i
+
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o  Currently the ePIC detector uses a dual radiator ring-imaging Cherenkov detector (RICH) in the
hadron direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a
modular RICH in the electron direction.

o  Simulating these detectors is typically compute expensive, involving many photons that need to
be tracked through complex surfaces. =/

o All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one
having the more complex ring patterns. 4
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DIRC utilized in GlueX experiment

DIRC radiators

DIRC photon camera

16-sided polygonal barrel at a
radius of 1 m

Each bar box includes a set of
eleven radiator bars, made of
synthetic fused silica bars, each
4200 mm long, with a cross
section of 17 mm x 32.7 mm

Sensor options under
consideration are MCP-PMTs
and SiPM.

G. Kalicy, "Developing high-performance DIRC detector for the future Electron lon Collider experiment." Journal of Instrumentation 15.11 (2020): C11006.
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Ali et al., JINST 15 (2020) 04, C04054
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Image of expansion volume taken from GlueX DIRC,
Ali et al., JINST 15 (2020) 04, C04054 DI RC at GlueX ( J La b ) I

Hit pattern defined in (x,y,t)
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Patterns take up significant
fractions of the PMT in x,y and are
read out over 50-100 ns due to
propagation time in bars.

H12700 PMTs have a time
resolution of O(200 ps) and
read-out electronics giving time
information in 1 ns buckets.

Time [ns]

1PMT made by 64 pixels, each
pixel is 6mm x 6mm size
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Displayed PDF. Patterns are
sparse with variable photon yield

photon yield for p varying
P from 0 to 5 GeV/c

photons per track, [#]
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Image of expansion volume taken from GlueX DIRC
Ali et al., JINST 15 (2020) 04, C04054

) DIRC at GlueX (JLab) |

| & ' \ Kaons @ 4 GeV/c for different polar and azimuthal angle

<AV AN +

AN A P \ . l\ ‘h .FE :
/{,'.-?\:'§1§:\M rs ! steel box e gl IF:F:H ol & ,:’ |”
QNANRA] T M Pl 2y - o it

Py 4 / '.=; u 'tl_ ’ _..-.. e +‘E$tﬂi. o | . ;
A :% HERL *%JF
i i
- 1 LR :

K/ /0% 8 NG
Z RS
Y/ WIREOWN R S
. \1\(,‘/“{ g b BT ¢
'! ‘\; t’v\.\? 'IS LR o .
: “ﬁﬁﬁwﬁhwﬂ“%&“'
ek LA TR TR D il e

3-aeq‘m » fupj, 5

—— /’/
i) \ // “’ f M f

N ////’

ELenKo Dependence on charged particle
kinematics

(p.(8,9)".X,Y)

\BaBar
Image of expansion volume taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054

bar box




number of photons: 1 I
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Four of the 8 possible ways to combine the photon vector 8_5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 09 095 1

with the track direction vector

0. [rad]

e All possible photon paths from the bar to each pixel are stored in
look-up tables

121
o = 0.8239 rad
e The Cherenkov angle is determined by calculating the angle - 6f=08175rad

between the photon direction from the LUT and the charged zg 08~ o;=8.1mrad
track direction from the tracking system 5 os[ Oc=84mrad
Q0 ‘
e Fast reconstruction/hit pattern *GEJ 04/
e Other approaches possible (e.g., time-based imaging utilizes 02|
detection time per pixel; superior reconstruction but memory iR e NN [T P B P
. ?).7 0.75 08 0.85 0.9
WC typically hungry)
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Jefferson bab R. Dzhygadlo et al. Nucl. Instr. And Meth. A, 766:263 (2014)



https://github.com/jmhardin/FastDIRC

I_Fa S -t D I RC cf. “direct”

e Framework for Fast Monte Carlo and reconstruction.

Each photon bounces O(100) times on average. Developed a billiard method that
maps the bounces onto a straight-line trajectory through a tiled plane

e Simulations: fast tracing mapping straight lines through a
tiled plane:

1.  Generation
2. Traces through bars
3. Traces through expansion volume

10000 faster than Geant4:
This facilitates reconstruction of Cherenkov angle with an
T improvement of 30% as compared to the Geometrical approach.
e PID strategy is likelihood based: P ° Slowgr than LUT. PP

o Ng photons are generated to produce the expected PDF.
o Ng and A chosen to provide best performance.

=== ROC Curve

Matched Gaussian ROC Curve
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J. Hardin and M. Williams, FastDIRC, JINST 11.10 (2016)
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rﬁéep Reconstruction Imaging CHerenkoJ_1

e Cherenkov detectors are relatively slow to simulate with full simulations like Geant

O

for the DIRC case, each Cherenkov photon reflects on average O(10?) times within a bar and this

makes the simulation CPU intensive.

e Not many Al-based applications:

@)
@)

Some work on fast simulation with Cherenkov detectors [1].
Lack of ML/DL applications for reconstruction/identification:

m  Most of them use high-level features from Cherenkov detectors and combine them to other

features from other sub-detectors for global PID [2].

e Can we build an Al-based architecture with the following desired properties?

It is fast and provides accurate reconstruction
Can be extended to multiple particle types
Generalizes to fast simulation |:>
Can utilize (x,y,t) patterns if time is measured

Can deal with different topologies and detectors

Deeply learns the detector response (real data can be injected)

[1] D. Derkach et al., arXiv:1903.11788v1, 2019

DeepRICH [3] is the first attempt in this direction.
I'll show prototype and discuss path forward.

DeepRICH: learning deeply Cherenkov detectors

Cristiano Fanelli"3 'y Pomponi?
Put 2 0:C i y IOP Publishing Ltd
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[2] D. Derkach et al., J. Phys.: Conf. Ser. 1085 042038, 2018
[3] C. Fanelli and J. Pomponi, Mach. Learn.: Sci. Technol. 1 015010, 2020 1 1



| DeepRICH Architecture

e DeepRICH is a custom architecture that combines

o VAE for reconstruction
o CNN + MLP for classification

e The model is trained by minimizing the total loss function:

L(x,X,y,y,1) =
ML (%,X) + ALy, ¥) + MWL, (1)

CNN/MLP
Classifier

Reconstruction loss (injected vs reco)

Classification loss

3 &
Classification
[ 05(x—R)? iflx—R| <1 Output

T { |x; —%| — 0.5 otherwise,

VAE MMD (latent)

EC = —(yl ¥y +(1- ] y
(ylog(¥,) + (1 —y)log(¥,)) tackled 1, K

separation. This
L,=MMD(p(z),q(z)) = Ep(l):P(Z’) [k(z,2)] can be extended
to,e.g., p

+Eq() q2) [6(2,2)] = 2Ep(5) gy [K(2,7)]
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DeepRICH Architecture

iniected Example of hit pattern detected
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Example of features extracted :
by the CNN from 1 and K at 5 GeV.
The plot shows separation power.
; reconstructed

The 3D visualization is obtained
with t-SNE.




Absolute difference @ P=5.0 GeV/c

latent variables

|Performance
11/K distinguishing power:
L visualizations —~—,

Absolute difference @ P=4.0 GeV/c
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, -0.15
-0.20
Example of features extracted by the CNN module from 1’s and K’s at 4 GeV/c (left) .
and 5 GeV/c (right). These features are then used to classify the particle. The plot
shows a better separation between 1/K at 4 GeV/c, which means that the network has —— = =030
good distinguishing power. As expected the points become less separated at larger
momentum. The 3D visualization is obtained with t-SNE. 2D plot of the absolute difference on each latent variable between 1’'s and K’s,
obtained for 5 GeV/c and 4 GeV/c, respectively. The color indicates the absolute
difference, the larger the difference the larger is the distinguishing power. As
expected the separation becomes less clear at 5 GeV. Also there is no appreciable
dependence on the position on the bar resulting in patterns with vertical bands.
M (Bottom) The relative difference showing negative values in the majority of the bins.
Jefferson Lab 1 4




s DeepRICH 7 FastDIRC 7 s DeepRICH 7 mm FastDIRC 7
= DeepRICH K FastDIRC K mem= DeepRICH K~ mmmmm FastDIRC K
0.20 .20

In DeepRICH the output of the classifier is
two-dimensional (T1/K) and € R ,‘
@4GeVic | . @5GeVic

e These values are utilized to build the DLL between 11/K , ) Boof
DeepRICH AUC: 0.9983 = DeepRICH AUC: 0.9724

=

e ROC is obtained by changing the threshold on the
DLL. ROC curves are produced generating 350
particles for each kinematics

0.4
pion rejection

e The AUC is used as a metric to compare
DeepRICH to FastDIRC

AUC(DeepRICH) > 0.99 AUC(FastDIRC)

AUC: 0.999 & | FastDIRC AUC: 0.9689

04 0.6 0.8 1.0
pion rejection




rﬁérformance

(1) The ratio between DeepRICH and FastDIRC AUCSs: Each AUC is calculated to
show the partial dependence on one kinematic parameter by marginalizing on all other parameters.
Notice at 4 GeV/c that the two reconstruction methods perform almost identically.

DeepRICH FastDIRC

Kinematics € £s 15

(2) Radar plots of correlation between the AUC and each kinematics parameter for inerence ime per bach
inference network memor
DeepRICH and FastDIRC. The two reconstruction algorithms perform similarly as a function of the kinematic training networkmemoryy

parameters. AUC depends on momentum, as distinguishing power gets lower at larger momentum. network memory on local storage
network trainable parameters
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(3) Inference time: inference time is almost constant as a function of the
batch size, meaning that the effective inference time—i.e., the reconstruction time
per particle—can be lower than a ps able to handle 10* particles in about 1.4 ms
in the inference phase. Notice that the corresponding memory size in the
inference phase is approximately equal to the value reported in the table. 6

Jefferson Lab



alignment

Real Offsets

3-seg mirror:

0x,0y,02=(0.25,0.50,0.15) deg, y = 0.5 mm;

barz=2.0 mm;

2864 os PMT (r,0)=(1.5 mm,1.0 deg)

-aligned
true

Minimum at

TR e 3-seg mirror:
— - .. 0x,0y,0z= (0.2485, 0.5832, 0.1171) deg,

y = 0.5894 mm;

bar z =2.0788 mm;

PMT (r,8)=1.8690 mm, 1.3544 deg

-aligned
true

: barz [mm]
y [mm] 15 00 15 3

-aligned
true

rtial dependence

pmt r [mm]
8 2.4 30

NSRS $ < S ® X SN O A% 32 40 o
Thx [deg] Thy (deg] ; y mm] barz [mm] pmt r [mm]

C. Fanelli 2020, Machine learning for imaging Cherenkov detectors,
JINST 15 C02012

Bayesian Optimization

Recipe: For each call of the optimizer, M offset points are explored
using N different particles (for each call). The total number of calls is T

T=120 M=10 N=125
Particles used = 15000
Points explored = 1200

use high purity samples of
for alignment

FoM = LogL normalized to a default alignment
3-seg mirror offsets

(most critical for alignment)
found within the tolerances.

steel box

" (D)
il
L
N o g ——— ’
T v
= ‘ ¥
e
correct calibrated nominal
3-seg mirror: 3-seg mirror: 3-seg mirror:
0x,8y,62=(0.25,0.50,0.15) deg, 0x,8y,62=(0.2485, 0.5832, 0.1171) deg, 6x,8y,8z=(0., 0., 0.) deg,
y=0.5mm; y = 0.5894 mm; y=0.mm;

bar z = 2.0788 mm;
PMT (r,8)=(1.8690 mm, 1.3544 deg)

barz=2.0 mm;
PMT (r,0)=(1.5 mm,1.0 deg)

| Eff. Reso: 2.041 mrad
" Reso per y: 10.725 mrad
AUC: 98.9%

Eff. Reso: 1.572 mrad | Eff. Reso: 1.599 mrad
| Reso pery: 8.411 mrad

AUC: 99.83%

" Reso per y: 8.265 mrad
. AUC: 99.85%

08 1

08 1 % 02 0.4 08 1
Kaon Efficiency

Kaon Efficiency Kaon Efficiency



dRICH : ante—proposal aerogel (4 cm, n(400 nm): 1.02)

+ 3 mm acrylic filter
+ 1.6 m, n(C_F,): 1.
E. Cisbani, A. Del Dotto, CF*, M. Williams et al. gas (1.6 m, (CZ 6) 0008)
"Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case."
Journal of Instrumentation 15.05 (2020): P05009.

. AN
Aerogel + Filter,

0[Gev] 5

charged
particle

0
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mRICH DIRC dRICH g dRICH STOF(20ps)  dE/dx
aerogel gas sTOF(10ps)

e  Continuous momentum coverage.
e Simple geometry and optics, cost effective.
e Legacy design from INFN, see EICUG2017

e 6 Identical open sectors (petals)
e  Optical sensor elements:

8500 cm?/sector, 3 mm pixel
e Large focusing mirror

M) T Aerogel + Filter '

Jefferson Lab
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https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

I d R I C H r e C O n S t r u C t i O n * analogy with different approaches discussed for DIRC I

e Indirect Ray Tracing (IRT)

o  The basic idea is that, given tracking information and RICH PMT hits, the Cherenkov-photon emission angle can be
reconstructed.

o  The distribution of observed photon angles is compared to the expected angle for each particle type and the most
likely particle type is determined.

o  Fast, non computationally intensive. Lowest accuracy compared to other methods in this slide.
e Direct Ray Tracing (DRT)
o  Simulates a PMT hit pattern based on the track kinematics and particle hypothesis

o  Construct likelihood by comparing “PDF” to the observed hit pattern

e aerogel ring e aerogel ring

e Event-level algorithm (EVT)

e C4F10 ring e C4F10ring

o  Motivation: two close tracks can produce misidentification

o  Builds upon DRT. Improvement by looking at each event as a whole
rather than individual tracks

m — sum over all tracks in the event

R. M. Lamb, PhD thesis, 2010, The Boer-Mulders and Cahn effects: Azimuthal modulations in the spin-independent SIDIS cross section
at HERMES, 19



https://inspirehep.net/literature/872161

| ML/DL for dRICH reco? S g

SO\ =
e Just moved first steps in this direction... 3 ' k S /‘
o https://eic.ai/hackathons (10/14/2022, W&M) 2

hackathon supported by AWS — powe red
4 GPUs / instance on cloud computing; b\/ aWS

1 instance / team;
10 teams total —
prize supported by W&M

https://aideichackathon.pythonanywhere.com/leaderboard

A

e \We started from particle level
e \We will move to event level reconstruction Congrats Team JINR!!!!!!!! (submission on 10-14-

10 teams, 30+ people, both in person and virtual; participation from America, Europe, Asia

® Documentation (problem description and dataset):
https://doi.org/10.5281/zenodo.7197023

e Solutions accepted only above a certain threshold for the score 295502 Q1Q3Q2
o  Hackathon winning team declared by 5pm ET of 10/14/2022
m  Team JINR!

o  Solutions accepted for an additional week:
m  Best solution overall by Team Jets



https://eic.ai/hackathons
https://drive.google.com/file/d/13BEzZ3NBbabb6JHSkQ9OqFrWp6fc42ba/view
https://doi.org/10.5281/zenodo.7197023%C2%A0
https://ai4eichackathon.pythonanywhere.com/leaderboard

| AT4EIC Hackathon

Aerogel

Sensor Surface

T, K datasets

Training Events | 1.5

Organizers: Cris Fanelli (William & Mary/JLab), Diana McSpadden (JLab/Data Science), Kishan Rajput (JLab/Data Science)

Advisory and problem definition: Evaristo Cisbani (INFN), Wouter Deconinck (U. Manitoba)
Computing resources: Eric Walter (William & Mary, IT)
Data generation, Documentation, Validation: James Giroux (U. Regina), Karthik Suresh (U. Regina)

Technical Assistance: Eric Walter (William & Mary, IT), James Giroux (U. Regina), Karthik Suresh (U. Regina)

Problem
Number

Problem 1
Problem 2
Problem 3

Solutions:

QNN Problem 1 e JINR: CatBoost (Yandex),

*Problem 3: addition of noisy hits

e Jets: 2D CNN

The best solutions were all Machine Learning/Deep Learning-based, they were quite

Probl em 2’3* original, and they outperformed solutions based on classical approaches (followed

by some teams). While this is only a first step towards deeply learning the
identification of particles reconstructed with the dual-RICH, these exploratory studies
clearly indicates the potential of ML/DL approaches for reconstruction and PID.

R httos:/eic.ai/hackathons 21

Jefferson Lab



https://eic.ai/hackathons
https://catboost.ai/

|_Outlook _I

e EIC shifting towards streaming data, near real time analysis and automated
alignment/calibration (see streaming readout [1,2])

e Existing ML/DL solutions for imaging Cherenkov reconstruction looks promising
o Allows for faster reconstruction and high accuracy — streaming

o ML/DL suitable for reconstruction at the event level (not only at the particle level)
combining multiple tracks

o Bonus: fast simulation...

e Al/ML approaches provide solutions for automated tasks (e.g., calibration/alignment)

o Ongoing work to extend current algorithms, e.g., to accommodate multiple classes and
cover larger phase-space; deploy this on ePIC data

[1] Streaming Readout Workshop X, 2022
[2] AI4EIC Workshop, 2022, Streaming Readout Session 22


https://www.jlab.org/streaming-readout-x
https://indico.bnl.gov/event/16586/sessions/5677/#20221013

