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● Imaging Cherenkov for PID

○ EIC as an example 

■ DIRC 

● Reco, alignment 

■ dRICH

● Reco / hackathon 

● Conclusions



Electron Ion Collider
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A precision tool to study the glue that binds visible matter

CoM energy √se-p ~ (20-140) GeV

uncovered x-Q2 range

How does the mass of the nucleon arise? 

How does the spin of the nucleon arise? 

What are the emergent properties of 
dense systems of gluons? 

e: 5 to 18 GeV p: 41, 100 to 275 GeV

polarized electron - polarized protons/ions



PID with Cherenkov: EIC example
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electrons/photons π/K/p

eta Nomenclature PID Min E Photon P-range [GeV/c] Separation

-3.5 to -2.0 Backward π suppression up to 
1:1E-4

20 MeV

≤ 10 GeV/c

≤ 3σ

-2.0 to -1.0 Backward π suppression up to 
1:1E-3 - 1:1E-2

50 MeV

-1.0 to 1.0 Barrel π suppression up to 
1:1E-2

100 MeV ≤ 6 GeV/c

1.0 to 3.5 Forward 3σ e/π up to 15 
GeV/c

50 MeV ≤ 50 GeV/c

mRICH

DIRC

dRICH

● Cherenkov detectors form the backbone of PID at EIC 

○ Currently the ePIC detector uses a dual radiator ring-imaging Cherenkov detector (RICH) in the 
hadron direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a 
modular RICH in the electron direction.

○ Simulating these detectors is typically compute expensive, involving many photons that need to 
be tracked through complex surfaces. 

○ All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one 
having the more complex ring patterns. 

Image does not reflect latest design version of ePIC PID systems.



hpDIRC at EIC

5G. Kalicy, "Developing high-performance DIRC detector for the future Electron Ion Collider experiment." Journal of Instrumentation 15.11 (2020): C11006.

● 16-sided polygonal barrel at a 
radius of 1 m

● Each bar box includes a set of 
eleven radiator bars, made of 
synthetic fused silica bars, each 
4200 mm long, with a cross 
section of 17 mm × 32.7 mm

● Sensor options under 
consideration are MCP-PMTs 
and SiPM.

DIRC utilized in GlueX experiment



Image of expansion volume  taken from GlueX DIRC, 
Ali et al., JINST 15 (2020) 04, C04054

Cherenkov 
photons

photon yield for p varying 
P from 0 to 5 GeV/c

Image of expansion volume taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054 6

DIRC at GlueX (JLab)



3D (x,y,t) readout  allows to 
separate spatial overlaps. 

Patterns take up significant 
fractions of the PMT in x,y and are 
read out over 50-100 ns due to 
propagation time in bars.

H12700 PMTs have a time 
resolution of O(200 ps) and 
read-out electronics giving time 
information in 1 ns buckets. 

1PMT made by 64 pixels, each 
pixel is 6mm x 6mm size

Displayed PDF. Patterns are 
sparse with variable photon yield 
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Hit pattern defined in (x,y,t)

Image of expansion volume  taken from GlueX DIRC, 
Ali et al., JINST 15 (2020) 04, C04054

Cherenkov 
photons

photon yield for p varying 
P from 0 to 5 GeV/c

https://web-docs.gsi.de/~rdzhigad/
www/research/photon-yield-proton

Image of expansion volume taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054 7

DIRC at GlueX (JLab)



Dependence on charged particle 
kinematics 

(p,(θ,φ)*,X,Y)
1

Image of expansion volume taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054

Kaons @ 4 GeV/c for different polar and azimuthal angle

Cherenkov 
photons

Image of expansion volume  taken from GlueX DIRC, 
Ali et al., JINST 15 (2020) 04, C04054
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DIRC at GlueX (JLab)



charged particle Four of the 8 possible ways to combine the photon vector 
with the track direction vector

● All possible photon paths from the bar to each pixel are stored in 
look-up tables 

● The Cherenkov angle is determined by calculating the angle 
between the photon direction from the LUT and the charged 
track direction from the tracking system 

● Fast reconstruction/hit pattern 

● Other approaches possible (e.g., time-based imaging utilizes 
detection time per pixel; superior reconstruction but memory 
typically hungry)
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Sketch for 
illustrative purposes

R. Dzhygadlo et al. Nucl. Instr. And Meth. A, 766:263 (2014)

Geometrical Reconstruction
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cf. “indirect”



FastDIRC
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● Framework for Fast Monte Carlo and reconstruction. 

● Simulations: fast tracing mapping straight lines through a 
tiled plane:

1. Generation 
2. Traces through bars 
3. Traces through expansion volume  

Each photon bounces O(100) times on average. Developed a billiard method that 
maps the bounces onto a straight-line trajectory through a tiled plane 

PDF likelihood

10000 faster than Geant4: 
This facilitates reconstruction of Cherenkov angle with an 

improvement of 30% as compared to the Geometrical approach.
Slower than LUT.  

@ 5 GeV/c

● PID strategy is likelihood based:

○ Ng photons are generated to produce the expected PDF. 
○ Ng and λ chosen to provide best performance.  

J. Hardin and M. Williams, FastDIRC, JINST 11.10 (2016)

https://github.com/jmhardin/FastDIRCcf. “direct”



Deep Reconstruction Imaging CHerenkov
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● Cherenkov detectors are relatively slow to simulate with full simulations like Geant 

○ for the DIRC case, each Cherenkov photon reflects on average O(102) times within a bar and this 
makes the simulation CPU intensive.

● Not many AI-based applications:

○ Some work on fast simulation with Cherenkov detectors [1]. 
○ Lack of ML/DL applications for reconstruction/identification: 

■ Most of them use high-level features from Cherenkov detectors and combine them to other 
features from other sub-detectors for global PID [2].   

● Can we build an AI-based architecture with the following desired properties?

● It is fast and provides accurate reconstruction
● Can be extended to multiple particle types 
● Generalizes to fast simulation
● Can utilize (x,y,t) patterns if time is measured
● Can deal with different topologies and detectors 
● Deeply learns the detector response (real data can be injected)

[1] D. Derkach et al., arXiv:1903.11788v1, 2019
[2] D. Derkach et al., J. Phys.: Conf. Ser. 1085 042038, 2018
[3] C. Fanelli and J. Pomponi, Mach. Learn.: Sci. Technol. 1 015010, 2020

DeepRICH [3] is the first attempt in this direction. 
I’ll show prototype and discuss path forward. 
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DeepRICH Architecture
● DeepRICH is a custom architecture that combines 

○ VAE for reconstruction 

○ CNN + MLP for classification 

● The model is trained by minimizing the total loss function:

Reconstruction loss (injected vs reco) 

Classification loss 

VAE MMD (latent)

tackled π, K 
separation.  This 
can be extended 
to, e.g., p 

reconstructed

injected

latent space



DeepRICH Architecture
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reconstructed

injected

latent space

reconstructed  π 
injected π 

Example of features extracted 
by the CNN from π and K at 5 GeV. 

The plot shows separation power. 
The 3D visualization is obtained 

with t-SNE. 

Example of hit pattern detected 
in the PMT plane (spatial 
coordinates are dubbed x,y, 
while the time is indicated as t) 
simulated with FastDIRC and 
reconstructed with VAE



Performance
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π/K distinguishing power: 
visualizations 

@ 4 GeV/c @ 5 GeV/c

Example of features extracted by the CNN module from π’s and K’s at 4 GeV/c (left) 
and 5 GeV/c (right). These features are then used to classify the particle. The plot 
shows a better separation between π/K at 4 GeV/c, which means that the network has 
good distinguishing power. As expected the points become less separated at larger 
momentum. The 3D visualization is obtained with t-SNE. 2D plot of the absolute difference on each latent variable between π’s and K’s, 

obtained for 5 GeV/c and 4 GeV/c, respectively. The color indicates the absolute 
difference, the larger the difference the larger is the distinguishing power. As 
expected the separation becomes less clear at 5 GeV. Also there is no appreciable 
dependence on the position on the bar resulting in patterns with vertical bands. 
(Bottom) The relative difference showing negative values in the majority of the bins.

latent variables



Performance
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In DeepRICH the output of the classifier is 
two-dimensional (π/K) and ∈ R2. 

● These values are utilized to build the DLL between π/K  

● ROC is obtained by changing the threshold on the 
DLL. ROC curves are produced generating 350 
particles for each kinematics

● The AUC is used as a metric to compare 
DeepRICH to FastDIRC

AUC(DeepRICH) ≳ 0.99 AUC(FastDIRC)

@ 4 GeV/c @ 5 GeV/c



Performance
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(1) The ratio between DeepRICH and FastDIRC AUCs: Each AUC is calculated to 
show the partial dependence on one kinematic parameter by marginalizing on all other parameters. 
Notice at 4 GeV/c that the two reconstruction methods perform almost identically. 

(2) Radar plots of correlation between the AUC and each kinematics parameter for 
DeepRICH and FastDIRC. The two reconstruction algorithms perform similarly as a function of the kinematic 
parameters. AUC depends on momentum, as distinguishing power gets lower at larger momentum.

1

DeepRICH FastDIRC

2

3

(3) Inference time:  inference time is almost constant as a function of the 
batch size, meaning that the effective inference time—i.e., the reconstruction time 
per particle—can be lower than a μs  able to handle 104 particles in about 1.4 ms 
in the inference phase. Notice that the corresponding memory size in the 
inference phase is approximately equal to the value reported in the table. 



DIRC alignment 
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Real Offsets
3-seg mirror:

θx,θy,θz=(0.25,0.50,0.15) deg, y = 0.5 mm;
bar z = 2.0 mm; 

PMT (r,θ)=(1.5 mm,1.0 deg)

Minimum at
3-seg mirror:

θx,θy,θz= (0.2485, 0.5832, 0.1171) deg, 
y = 0.5894 mm; 

bar z =2.0788 mm; 
PMT (r,θ)=1.8690 mm, 1.3544 deg

C. Fanelli 2020, Machine learning for imaging Cherenkov detectors,  
JINST 15 C02012

Bayesian Optimization

use high purity samples of π 
for alignment
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aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008)

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. 
"AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case." 

Journal of Instrumentation 15.05 (2020): P05009.

● Continuous momentum coverage. 
● Simple geometry and optics, cost effective.
● Legacy design from INFN, see EICUG2017 

● 6 Identical open sectors (petals)
● Optical sensor elements: 

8500 cm2/sector, 3 mm pixel
● Large focusing mirror 

dRICH: ante-proposal

https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf


dRICH reconstruction 
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● Indirect Ray Tracing (IRT)

○ The basic idea is that, given tracking information and RICH PMT hits, the Cherenkov-photon emission angle can be 
reconstructed. 

○ The distribution of observed photon angles is compared to the expected angle for each particle type and the most 
likely particle type is determined.

○ Fast, non computationally intensive. Lowest accuracy compared to other methods in this slide.

● Direct Ray Tracing (DRT)

○ Simulates a PMT hit pattern based on the track kinematics and particle hypothesis 

○ Construct likelihood by comparing “PDF” to the observed hit pattern 

● Event-level algorithm (EVT)

○ Motivation: two close tracks can produce misidentification 

○ Builds upon DRT. Improvement by looking at each event as a whole 
rather than individual tracks 

■ → sum over all tracks in the event

R. M. Lamb, PhD thesis, 2010, The Boer-Mulders and Cahn effects: Azimuthal modulations in the spin-independent SIDIS cross section 
at HERMES, https://inspirehep.net/literature/872161 

* analogy with different approaches discussed for DIRC

https://inspirehep.net/literature/872161


● Just moved first steps in this direction… 

○   https://eic.ai/hackathons (10/14/2022, W&M)

● We started from particle level 

● We will move to event level reconstruction 

● Documentation (problem description and dataset): 
https://doi.org/10.5281/zenodo.7197023 

● Solutions accepted only above a certain threshold for the score
○ Hackathon winning team declared by 5pm ET of 10/14/2022 

■ Team JINR! 
○ Solutions accepted for an additional week:

■ Best solution overall by Team Jets 

https://ai4eichackathon.pythonanywhere.com/leaderboard

10 teams, 30+ people, both in person and virtual; participation from America, Europe, Asia 
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ML/DL for dRICH reco?

https://eic.ai/hackathons
https://drive.google.com/file/d/13BEzZ3NBbabb6JHSkQ9OqFrWp6fc42ba/view
https://doi.org/10.5281/zenodo.7197023%C2%A0
https://ai4eichackathon.pythonanywhere.com/leaderboard
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AI4EIC Hackathon

https://eic.ai/hackathons

Problem 1

The best solutions were all Machine Learning/Deep Learning-based, they were quite 
original, and they outperformed solutions based on classical approaches (followed 
by some teams). While this is only a first step towards deeply learning the 
identification of particles reconstructed with the dual-RICH, these exploratory studies 
clearly indicates the potential of ML/DL approaches for reconstruction and PID.

π, K datasets

Problem 2,3*

*Problem 3: addition of noisy hits

Solutions:
● JINR: CatBoost (Yandex), https://catboost.ai/ 
● Jets: 2D CNN

https://eic.ai/hackathons
https://catboost.ai/


Outlook
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● EIC shifting towards streaming data, near real time analysis and automated 
alignment/calibration (see streaming readout [1,2])

● Existing ML/DL solutions for imaging Cherenkov reconstruction looks promising 

○ Allows for faster reconstruction and high accuracy — streaming 

○ ML/DL suitable for reconstruction at the event level (not only at the particle level) 
combining multiple tracks 

○ Bonus: fast simulation… 

● AI/ML approaches provide solutions for automated tasks (e.g., calibration/alignment) 

○ Ongoing work to extend current algorithms, e.g., to accommodate multiple classes and 
cover larger phase-space; deploy this on ePIC data

[1] Streaming Readout Workshop X, 2022
[2] AI4EIC Workshop, 2022, Streaming Readout Session

https://www.jlab.org/streaming-readout-x
https://indico.bnl.gov/event/16586/sessions/5677/#20221013

