Particle production in the DIS target fragmentation region

Federico Alberto Ceccopieri

IJCLab, Orsay, France

Workshop on kaons with CLAS12 Laboratori Nazionali di Frascati 13-16 December 2022

Based on EPJ C 73 (2013) 2435 and EPJ C 76 (2016) 2

Outline of the talk

- Hadronic final state in DIS
- Factorisation and evolution in the target region
- Target fragmentation in SIDIS : the Λ case
- Predictions for CLAS@12 GeV
- K- Λ correlation in DIS final state

The leading particle effect in hadronic collisions

- Consider : $\bar{p}p \rightarrow c + X$
- $x_F = 2p_{||}/\sqrt{s}$ in hadronic centre of mass
- Leading particle effect : privileged quark-flavour quantum number flow from the initial state particle (either \bar{p} or p)to the final state one (c)
- the more the quark-flavour content is conserved from initial to final state hadron, the more the latter carries a substantial fraction of the energy available in the reaction.
- Pions (Gribov QCD light) don't show LPE
- However no hard momentum transfer is present in this reaction \rightarrow pQCD can not be applied

Basile & al. '81

The leading particle effect in DIS

−lzª

- Consider : $\mu p \rightarrow \mu + h + X$, DIS@280 GeV
- The same effect is observed in the DIS target fragmentation region, $x_F < 0$
- 뢰축 LPE for backward proton (uud) and Λ (uds)
- No LPE for $\overline{\Lambda}$ ($\overline{u}\overline{d}\overline{s}$), \overline{p} ($\overline{u}\overline{u}\overline{d}$) and mesons in $x_{F} < 0$
- But here we DO have hard scale now, $Q^2 \gg \Lambda^2_{QCD}$

EMC Coll. '81

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.3/23

Fragmentation in SIDIS

• Consider a Deep Inelastic Scattering event in which a highly virtual photon probes a parton fluctuation on timescale 1/Q in a nucleon with momentum P

Define $t = (P - p_h)^2$:

- for $t \sim Q^2 \rightarrow$ current fragments
- for $t \sim 0$ target fragments
- for $0 < t < Q^2$ central fragmentation region: higher order corrections

Factorisation in SIDIS

- Factorization theorem allows the decoupling of short distance (ME) from long distance (f, D, M) physics
- f, D, M are not calculable from first principles
- The evolution of f, D, M however is known (RGE)
- At lowest order, in the current region $(x_F > 0) \ d\sigma \propto f \otimes D$ and in the target region $(x_F < 0) \ d\sigma \propto M$
- Factorisation for *M* in SIDIS has been proven at collinear and soft level (Grazzini, Trentadue, Veneziano 1998; Collins 1998)
- Collinear factorization confirmed in fixed order pQCD calculation at $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha_s^2)$ (Graudenz, 1994; Daleo & al 2003)

Fracture functions in SIDIS

- Fracture functions M complete the description of SIDIS final state:
- *M* parametrize soft QCD dynamics in forward semi-inclusive processes.
- $M_{i/p}^{h}(x, z, Q^{2})$ gives the conditional probability that a parton i with a fractional momentum x of the incoming proton enters the hard scattering while an hadron h with fractional momentum z is detected in the TFR of p.
- They obey a DGLAP-type inhomogeneous evolution equations:

$$Q^2 \frac{dM_{i/p}^h}{dQ^2} = \frac{\alpha_s}{2\pi} P_{ji} \otimes M_{j/p}^h + \frac{\alpha_s}{2\pi} \widehat{P}_{ji}^l \otimes f_{j/p} D_l^h.$$

Trentadue, Veneziano '94

h

x(1-u)/u

Х

b)

x/u

Ρ

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.6/23

Λ leptoproduction in DIS

- $\mu p \rightarrow \mu \Lambda X @$ 280 GeV, DIS regime
- Forward $(x_F > 0) \Lambda$ and $\overline{\Lambda}$ production comparable
- No LPE for $\bar{\Lambda}$ s, symmetric around $|x_F| \sim 0$
- LPE for Λs (uud \rightarrow uds)
- Focus on Lambdas in the following

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.7/23

• z_h not good for target: mixes soft and target hadrons for $z_h \rightarrow 0$

$$z_{h} = \frac{P \cdot h}{P \cdot q} = \frac{E_{h}^{*}}{E_{p}^{*}(1 - x_{B})} \frac{1 - \cos\theta}{2}$$

• hadron variables in γ^*N c.o.m. frame:

$$z_G = \frac{E_h^*}{E_p^*(1 - x_B)}, \quad E_p^*(1 - x_B) = W/2, \quad \zeta = \frac{E_h^*}{E_p^*}, \quad x_F = \pm \sqrt{z_G^2 - \frac{4m_T^2}{W^2}}$$

The Lambda leptoproduction cross section in term of these variables reads

$$\frac{d\sigma^{\Lambda/N}}{dx_B \, dQ^2 \, dz_G} \propto \frac{z_G}{|x_F|} \sum_i c_i \left[f_{i/N}(x_B, Q^2) \, D_i^{\Lambda}(z_G, Q^2) + (1 - x_B) \, M_{i/N}^{\Lambda}(x_B, (1 - x_B) z_G, Q^2) \right]$$

- Best strategy to extract M: subtract the current from z_G spectra
- But: Large uncertainties on FFs at low Q, no z_G spectra available in the literature..
- Resort to kinemtical separation in x_F : associate target fragments to $x_F < 0$

Federico A. Ceccopieri

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.8/23

Initial conditions for Λ fracture functions (1)

- The hard scattering process occurs on times scales of the order 1/Q much shorter than the typical ones of spectator fragmentation, $\sim 1/Q_0$
- At such low scale, a parton with flavour *i* and momentum *x* is then removed from the proton with probability $f_{i/P}(x_B, Q_0^2)$
- The leftover coloured system reassembles to give colourless Λ with fractional momentum zon much longer "time scale", $\sim 1/\Lambda_{QCD}$, with probability $\widetilde{D}_i^{\Lambda}(z)$
- Phenomenological factorisation: $M \propto f \times \widetilde{D}$

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.9/23

- Assumption : fracture functions can be factorized, at some low and arbitrary $Q_0^2\sim 1~{\rm GeV}^2$ scale, in the form

$$(1-x_B)M^{\Lambda}_{i/p}(x_B,\,\zeta,Q^2_0) = M^{\Lambda}_{i/p}(x_B,\,z,Q^2_0) = f_{i/p}(x_B,Q^2_0)\widetilde{D}^{\Lambda}_i(z)$$

- $f_{i/p}(x, Q_0^2)$ are standard parton distribution functions (GRV'94)
- $\widetilde{D}_i^{\Lambda}(z)$ are unknown spectator fragmentation functions
- The input distributions are then evolved to arbitrary scales via FF evolution equations.

• Exploit GRV'94 valence/sea decomposition \oplus simplied flavour and energy dependence

$$(1 - x_B) M_{u/p}^{\Lambda}(x_B, z, Q_0^2) = u_v(x_B, Q_0^2) N_u z^{\alpha_u} (1 - z)^{\beta_u} + u_s(x, Q_0^2) N_s z^{\alpha_s} (1 - z)^{\beta_s}$$

$$(1 - x_B) M_{d/p}^{\Lambda}(x_B, z, Q_0^2) = d_v(x_B, Q_0^2) N_d z^{\alpha_d} (1 - z)^{\beta_d} + d_s(x, Q_0^2) N_s z^{\alpha_s} (1 - z)^{\beta_s}$$

$$(1 - x_B) M_{g/p}^{\Lambda}(x_B, z, Q_0^2) = g(x, Q_0^2) N_s z^{\alpha_s} (1 - z)^{\beta_s}$$

$$(1 - x_B)_{q_s/p}^{\Lambda}(x_B, z, Q_0^2) = q_s(x_B, Q_0^2) N_s z^{\alpha_s} (1 - z)^{\beta_s}$$

- In case of scattering on a sea quark, the spectator fragments independently of the flavour of the latter: $N_s z^{\alpha_s} (1-z)^{\beta_s}$
- x_B dependence driven by pdfs. 12 free pars
- Gluon spectator fragmentation unconstraind, set $\widetilde{D}_g^{\Lambda} = \widetilde{D}_{q_s}^{\Lambda}$, \rightarrow 9 free pars

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.11/23

- fit data only on light targets : $N = p, D, n \rightarrow$ flavour sep., avoid nuclear effects
- observable : $d\sigma^{\Lambda}/dx_F$
- Inclusive Λ sample : Λ from higher mass resonance decays included in the sample

Reaction	$\langle E_i \rangle$	$\langle W^2 \rangle$	$\langle Q^2 \rangle$	$\langle x_B \rangle$	Λ rates
type	$({\sf Ge}V)$	$({\sf Ge}V^2)$	$({\sf Ge}V^2)$		(%)
νp [1]	50.0	-	-	-	7.0 ± 1.2
u n [1]	50.0	-	-	-	7.0 ± 0.8
u p [2]	42	34.7	8.7	0.2	5.2 ± 0.3
$ar{ u}p$ [2]	38.5	20.4	5.2	0.2	5.7 ± 0.4
μp [3]	280	130	12	0.11	-
μD_2 [3]	280	130	12	0.11	-
μD_2^{-} [4]	490	292	8.6	0.036	7.8 ± 1.6

- [1] C. C. Chang et al., Phys. Rev. D27 (1983) 2776.
- [2] G. T. Jones et al. (WA21 Collaboration), Z. Phys. C57 (1993) 197.
- [3] M. Arneodo et al. (EMC Collaboration), Z. Phys. C34 (1987) 283.
- [4] M. R. Adams et al. (E665 Collaboration), Z. Phys. C61 (1994) 539.

Federico A. Ceccopieri

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.12/23

Fit results and error propagation

- Study of the eigenvalues of the Hessian matrix → parameter reduction : 7 free pars
- $\widetilde{D}_i^{\Lambda} = N_i z^{\alpha_i} (1-z)^{\beta_i}$
- 3 normalizations N_i well determined
- β_i determined with acceptable errors
- α_i mostly unconstrained: $\alpha_u = \alpha_d$ and $\alpha_{q_s} = 0$
- $\chi^2/d.o.f. = 44.14/(46-7) = 1.13$
- propagation experimental uncertanties : 14 additional $\Lambda {\rm FF}$ set corresponding to $\Delta\chi^2=1$

Ceccopieri, Mancusi EPJC 2013

Federico A. Ceccopieri

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.13/23

SIDIS selection:

- 0.2 < y < 0.8, $Q^2 > 1 \text{ GeV}^2$, $W^2 > 5 \text{ GeV}^2$
- target Λ : $x_F < 0$

Target/Observable	$\langle n(\Lambda) angle$
proton	$0.038 \pm 0.003(exp)^{+0.004}_{-0.004}(mass)^{+0.002}_{-0.001}(scale)$
deuteron	$0.032 \pm 0.002(exp)^{+0.003}_{-0.004}(mass)^{+0.001}_{-0.001}(scale)$

Target/Observable	σ^{Λ} [pb]		
proton	$2382 \pm 170(exp)^{+247}_{-269}(mass)^{+159}_{-125}(scale)$		
deuteron	$1758 \pm 102(exp)^{+196}_{-206}(mass)^{+119}_{-92}(scale)$		

Ceccopieri EPJC 2016

- Best fit + 14 additional $\Lambda {\sf FF}$ set corresponding to $\Delta \chi^2 = 1$ built from eigenvectors of the Hessian matrix
- $\delta \langle n(\Lambda) \rangle = \pm 0.003$

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.15/23

Sensitivity to mass corrections

• Arbitrary variations: $\epsilon = \{0.9, 1, 1.1\}$

• $\delta \langle n(\Lambda) \rangle = \pm 0.004$, slight shape change

Federico A. Ceccopieri

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.16/23

Sensitivity to higher orders

- moderate scale dependence for differential yield \rightarrow compensation with scale dependence iDIS
- $\delta \langle n(\Lambda) \rangle = \pm 0.001$

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.17/23

Federico A. Ceccopieri

 \bullet

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.18/23

- Left: test leading twist hypothesis, assumed by fracture functions formalism
- Right : mild rise of Λ multiplicity with Q^2 : test pQCD evolution of fracture functions
- compare spectra in DIS and PHP regime: how the transition to the non-perturbative regime in Q^2 affects the Lambda spectrum in the target region.

Federico A. Ceccopieri

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.19/23

• The Q^2 -differential cross section 10^{-1} hydrogen $\widetilde{m}_{\Lambda} \stackrel{\smile}{=} 0$ $0.2 < x_B < 0.4$ deserve special attention $x_B < 0.2$ 10^{-2} $\frac{1}{\sigma_{\Omega_1^{S}}^{2}} \frac{d\sigma^{\Lambda}}{dQ^2} \left[GeV^{-2} \right]$ • it may provide crucial test for the predicted evolution of FFs • BUT : low values of W^2 accessed by the experiment • the Q^2 spectrum receives 10^{-2} significant hadron mass corrections $0.4 < x_B < 0.6$ $0.6 < x_B < 1$ They suppress the cross section 10^{-3} $\frac{d\sigma^{\Lambda}}{dQ^2}$ [GeV⁻²] as x_B increases. • to spot Q^2 scaling violations from 10^{-4} FF evolution use reduced $\frac{100}{6}$ 10^{-5} cross section (all Q^2 -dep. from M): $\frac{1}{\sigma_0} \frac{d\sigma^{\Lambda/N}}{dx_B \, dy \, dz} = \frac{z}{|x_F|} \sum_i e_i^2 M_{i/N}^{\Lambda}$ 10^{-6} 24 8 16 32 $\mathbf{2}$ 4 8 1632 $Q^2 \; [\text{GeV}^2]$ $Q^2 \, [\text{GeV}^2]$

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.20/23

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.21/23

 x_F

 x_F

 x_F

Strange correlation in SIDIS final state

- Consider double inclusive cross section: $lN \rightarrow \Lambda K^+ X$, in DIS regime
- Trigger on very backward Lambdas (uds), $-1 < x_F < -0.5$ and $K^+ (u\bar{s})$ for all x_F
- Measure cross section as a function of the rapidity difference $\Delta y = y_{K^+} y_{\Lambda}$
- for forward K^+ (say $x_F > 0.5$), the cross section can predicted: $d\sigma/d\Delta y \propto M^{\Lambda}_{i/N} \otimes D^{K^+}_i$

- for backward K^+ (say $x_F < -0.5$), the cross section depends on unknown two particles fracture functions: $d\sigma/d\Delta y \propto M_{_{i}/N}^{K^+,\Lambda}$
- Such an observable is sensitive to strangeness propagation accross the DIS final state

Federico A. Ceccopieri

Workshop on kaons with CLAS12, LNF, 15 December 2022, p.22/23

- For a complete description of SIDIS one has to deal with target fragmentation: its description in terms fracture functions is slowly improving (Relevant for EIC)
- Phenomenology at all energy and for different particles $(p, n, \Lambda, \pi, \bar{p})$ is required
- A model for the description of backward Λ production has been constructed in the fracture functions framework (CM12)
- Predictions for a number of observables for CLAS@12GeV have been presented: potential to test underlying theory and to sharpen the model to investigate
- ... strange correlations in DIS final state
- ... to give baseline for Lambdas production off nuclei
- ... to give baseline for target/current spin correlation studies