

FastSim with Delphes

Massimo Casarsa

INFN-Trieste, Italy

on behalf of the Muon Collider Physics and Detector Group

RD_MUCOL Italia – Pavia, December 20-21 2022

- Will summarize where we stand with the parametric detector simulation:
 - currently available Delphes card;
 - comparison to full simulation performance at 3 TeV.
- Ongoing work at 3 TeV.
- Plans for fast simulation at 3 TeV and 10 TeV.

- There is currently a Delphes card for the muon collider, written by M. Selvaggi in 2021 as an educated-guess hybrid between the FCC-hh and CLIC performance and intended as a target-performance card:
 - delphes_card_MuonColliderDet.tcl;
 - Michele's introductory talk on Delphes and the muon collider card.

NFN Track reconstruction efficiency

N Electron reconstruction efficiency

FULL SIMULATION

INFN Muon reconstruction efficiency

Photon reconstruction efficiency

FULL SIMULATION

Electromagnetic energy resolution

FULL SIMULATION

INFN

INFN B tagging efficiency

FAST SIMULATION

INFN Fast simulation vs full simulation

- At the last IMCC meeting, L. Giambastiani presented a comparison of our Higgs sensitivity studies carried out with the detector detailed simulation and the corresponding fast simulation results from M. Forslund and P. Maede's paper (arXiv:2203.09425):
 - Luca's talk.
- Fast simulation analyses:
 - samples generated at 3 TeV with MadGraph 5 + Pythia and normalized to an integrated luminosity of 1 ab⁻¹;
 - simple cut-based analyses;

▶ signal sensitivity estimated as
$$\frac{\Delta \sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$$

INFN Dijet invariant mass

INFN Preliminary full sim vs fast sim analyses

	Fulls	sim	Fast sim	
	H->WW	2.9%	H->WW	1.7%
	H->ZZ	17%	H->ZZ	11%
Cross sections - resolution	H->bb	0.75%	H->bb	0.76%
	→ H->μμ	38%	H->µµ	40%
	Η->γγ	8.9%	Η->γγ	6.1%
	HH->4b	30%		
Couplings _ resolution	g _{HWW} g _{HZZ} g _{Hbb} g _{Hµµ} g _{Hγγ}	0.9% 8.2% 0.8% 19% 4.5%	g _{HWW} g _{HZZ} g _{Hbb} g _{Hµµ} g _{Hγγ}	0.55% 5.1% 0.97% 20% 3.2%
	λ	20%	λ ₃ (95% CL)	25%

- Ongoing work to prepare a "working" Delphes card, based on the full simulation studies, to be kept up-to-date with future improvements in the physical objects reconstruction.
- Review and update the current "target" card to improve consistency with the full simulation studies:
 - same definitions of efficiencies (vs η or vs θ) and resolutions (Δp_T/p_T or Δp_T/p_T² for tracks), same jet clustering and b-tagging algorithms, ...

photon reconstruction efficiency from full sim

- We don't have a detector model for 10-TeV collisions yet.
- Define a baseline detector configuration from first principles (size, magnetic field intensity, ...).
- Use the parametric simulation to design the detector specifications:
 - a Delphes card has been implemented for FCC-ee that includes an analytic parameterization of the track parameter resolution as a function of a given tracker model;
 - use advanced machine-learning techniques (e.g. MODE).
- Once an optimal detector configuration is established, a "target" Delphes card will be prepared and a "working" Delphes card, based on the latest full simulation results, will follow.

- Given the unique and peculiar features of the beam-induced background at a muon collider, initial detector performance and physics studies were based on a detailed detector simulation and aimed at assessing the BIB effects and putting in place the necessary mitigation measures.
- Comparisons of the full simulation and fast simulation results allowed to identify the current working performance of the present detector design and the target one.
- Two new Delphes cards are in preparation for 3 TeV.
- The same strategy is going to be followed for 10 TeV.

NFN Detector model at 3 TeV

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;

7.5 λ_I.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.