

Muon R&D

Pavia group

UON Collider Collaboration

Riunione di collaborazione **RD_MUCOL Italia** Pavia 19-21 dic 2022

1. Muon system

- 1. Current simulation
- 2. Beam-induced Background (BIB)
- 2. Muon reconstruction
 - 1. Preliminary results without BIB
 - 2. Dealing with BIB
- 3. R&D on detectors
 - 1. Comparison of technologies
 - 2. Picosec
 - 3. Test beam results

Muon Collider detector

arXiv:2203.07964v1 Simulated Detector Performance at the Muon Collider

1 1 1	Subsystem	Region	R dimensions [cm]	Z dimensions [cm]	Material
hadronic	Vertex Detector	Barrel	3.0 - 10.4	65.0	Si
Calonnelei		Endcap	2.5-11.2	8.0-28.2	Si
electromagnetic	Inner Tracker	Barrel	12.7 - 55.4	48.2 - 69.2	Si
calorimeter		Endcap	40.5 - 55.5	52.4 - 219.0	Si
	Outer Tracker	Barrel	81.9 - 148.6	124.9	Si
		Endcap	61.8 - 143.0	131.0 - 219.0	Si
- tracking system	ECAL	Barrel	150.0 - 170.2	221.0	W + Si
		Endcap	31.0 - 170.0	230.7 - 250.9	W + Si
- shielding nozzle	HCAL	Barrel	174.0 - 333.0	221.0	Fe + PS
superconductive		Endcap	307.0 - 324.6	235.4 - 412.9	Fe + PS
solenoid (3.57 l	Solenoid	Barrel	348.3 - 429.0	412.9	Al
muon system	Muon Detector	Barrel	446.1 - 645.0	417.9	Fe + RPC
barrel		Endcap	57.5 - 645.0	417.9 - 563.8	Fe + RPC
muon system				•	
endcap					
-					

Muon system

Current design

Iron yoke plates instrumented with:

- $_{\odot}~$ 7 layers of detectors in the barrel
- o 6 layers in both endcaps

Detector technology: Glass Resistive Plate Chamber (GRPC)

Detector cells: 30x30 mm²

Magnetic field: o 1.34 T in barrel o 0.01 T in endcaps

Geometry based on CLIC detector arXiv:1202.5940 Physics and Detectors at CLIC: CLIC CDR

Beam-induced background

arXiv:2203.07224v1 Promising Technologies and R&D Directions for the Future Muon Collider Detectors

> 1-MeV-neq fluence $\sqrt{s} = 1.5 \text{ TeV}$ ring circumference = 2.5 km injection frequency = 5 Hz normalised to one year

ANNUAL MEETING @CERN Francesco Collamati Machineinduced background studies for 1.5 TeV and 3 TeV

BIB occupancy in the muon system is very low

100 600 500 400 3000.1 2000.01 1000.001 -1000.0001 -200 1e-05 -300 1e-06 -4001e-07 -500 -600-800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 900 600 700 200

Beam-induced background in the muon system

BIB mainly composed of neutrons and photons

- Energy ranges at $\sqrt{s} = 1.5 \text{ TeV}$
- $\circ~$ neutrons: from 10 MeV to 2.5 GeV
- o photons: from 100 keV to 200 MeV

Muon system

ANNUAL MEETING @CERN Ilaria Vai R&D studies on muon detectors

BIB hits concentrated around the beam axis in the endcaps

Geometrical cut + other cuts to reject almost all BIB hits in the muon system

Muon reconstruction

Algorithms for tracks

ANNUAL MEETING @CERN

Karol Krizka Tracks reconstruction algorithms performance

- 1. From electron positron colliders: Conformal Tracking (CT)
 - → with BIB: too long
 - └→ strategies:
 - a. Region of Interest (ROI)
 - b. double-layer filter

2. From hadron colliders: **Combinatorial Kalman Filter** (CKF) implemented using A Common Tracking Software (ACTS)

Muon reconstruction

Muons are reconstructed with the **Pandora Particle Flow** algorithm by matching tracks in the inner detector with clusters of hits in the muon system. Cluster = combination of hits (one hit per layer) inside a cone extending to the neighbouring layers

First results without BIB

Single muon efficiency

CT + Pandora

Transverse momentum

First results without BIB

Physics channels efficiency

Dealing with BIB

Muon reconstruction is quite straightforward without BIB.

But with BIB new strategies have to be adopted

Standalone muon reconstruction exploiting the low BIB occupancy in the muon system to identify a ROI for CT

ACTS overcome CT limits

1. Standalone muon reconstruction

- a. muon hits clustered inside a cone with angular aperture ΔR (selected value = 0.02)
- b. standalone muon track created if there are hits at least in 5 layers
- c. reconstructed hits in all tracker subsystems filtered (ROI)
- d. Conformal tracking algorithm applied

Limits

arXiv:2203.07964v1 Simulated Detector Performance at the Muon Collider

Limits

arXiv:2203.07964v1 Simulated Detector Performance at the Muon Collider

Low p_T

- inefficiencies in reconstruction in the region between barrel and endcap
- parameter tuning for high curvature tracks

2. ACTS

Efficiency >99% for p_T >10 GeV and >98% for 8° < θ < 172°

ACTS + Pandora

13

2. ACTS

14

Resolution less then 10^{-4} GeV⁻¹ for p_T > 30 GeV

https://indico.cern.ch/event/1197844/ Study of H->ZZ* at 3 TeV CoM energy

Single muon ~ 80%

<mark>to be investigated</mark> (ACTS+Pandora, TrackState?)

15

Requirement	Signal events (4000)	ε_s^{abs}	$\boldsymbol{\varepsilon}^{rel}_{s}$	Background events (9996)	ε ^{abs} Efficiency of the all event	$arepsilon_b^{rel}$
$\mu^{+}\mu^{-}$ detected	1804	0.451	0.451	2824	0.283	0.283
$p_t(\mu) > 10 \; { m GeV}$	1584	0.396	0.878	2685	0.269	0.951

Towards fast simulation

16

RD_MUCOL Meeting di collaborazione Massimo Casarsa FastSim with Delphes

Towards fast simulation

2. Muon reconstruction

Conclusions about reconstruction

What we learned so far

BIB occupancy in the muon system is very low

Muon reconstruction is straightforward without BIB

ACTS + Pandora is perfectly efficient in case of single muons with BIB

Out-in approach seems more efficient for multimuon channels

To do list

Systematic comparison between ACTS and CT + Pandora

• Technical checks: e.g. trackState not defined? Finalize algorithm also for Delphes card

Technologies for the muon system

Classical gaseous detectorO Double gap Glass RPC

• Double gap HPL RPC

Classical Micro Pattern Gaseous Detectors (MPGD) o Triple GEM

New generation MPGD o PicoSec

ANNUAL MEETING @CERN Ilaria Vai R&D studies on muon detectors

Technologies for the muon system

• Picosec has lower expected hit rate than RPC

• Expected Hit Rate for RPC already at the limits for current technology

20

Technologies for the muon system

Detector	σ_t	σ_{x}	Rate capability
RPC (HPL o Glass)	1 ns	~mm	~ 1 kHz/cm ²
Standard MPGD (GEM, Micromegas)	5-10 ns	~100 µm	> 100 kHz/cm ²

R&D Goal: develop a detector able to reach good performance on all the three items

a dedicated timing layer, to be combined with muon tracking layers

Picosec

https://indico.cern.ch/event/1224307/ Davide Fiorina Picosec test beam -Preliminary results

1. Look at **Cherenkov light**, not the ionisation

Photo-electrons created promptly with the MIP passage 2. Remove the drift gap and start the avalanche as soon as possible Measured time resolution ~ 25 ps

Plans for the single channel

New radiators

- MgF2 is the most UV trasparent material but:
 - High cost, fragile
 - Non perfectly stable during material deposition (imperfection on half of the samples)
- Investigate:
 - CaF₂ BaF₂, sapphire
 - Quartz \rightarrow the most promising for large areas, low cost and robustness (lower transparency)

New photocathodes

CsI has the best performance in terms of time resolution, resistive photocathodes are more promising for the long term and robustness

- B4C and DLC
- (Graphene and nanodiamonds trials by RD51)

New Gases

Baseline Ne/C2H6/CF4 80/10/10 – Flammable, High GWP, High cost!

- Removal of CF4
- Substitution of C2H6 (ethane) with iC4H10 (isobutane) or even better CO2
- Look for a Neon substitute (very difficult...)

Test beam 19Oct-1Nov 2022 MCP for time reference σ_t≈5ps

GOALS

- 1. Measure different radiator+photocathode combination yield (photoelectrons/MIP) and compare with RD51 detector
- 2. Measure time resolutions with different radiator+photocathode combination

Test beam: combination yield (radiator)

New radiators

- MgF2 is the most UV trasparent material but:
 - High cost, fragile
 - Non perfectly stable during material deposition (imperfection on half of the samples)
- Investigate:
 - $CaF_2 BaF_2$, sapphire
 - $Quartz \rightarrow$ the most promising for large areas, low cost and robustness (lower transparency)

25

(m)

Test beam: combination yield (radiator)

26

MgF2 (3mm) vs Quartz (2.6mm)

Quartz less transparent and thinner (≈15% less photoelectrons expected but here is too much).

Still promising

3. R&D on detectors

Test beam: combination yield (photocathode)

New photocathodes

CsI has the best performance in terms of time resolution, resistive photocathodes are more promising for the long term and robustness but hygroscopic

- •
- (Graphene and nanodiamonds trials by RD51) DLC not available, B4C similar behaviour

Ineutrons

Test beam: time resolution

The more the photoelectrons, the lower the time resolution

- Csl measurement as before 24ps@ 3.3kV/cm
- Quartz can provide <100 ps

28

◆ Quartz Csl 150um NEW MM ■ new Csl D=150um NEW MM

Conclusions about Picosec R&D

What we learned so far

Expected time resolution with CsI achieved

Different configurations (photocathode+radiator) achieved <100 ps To do list

Test new photocathodes (DLC) and radiators Test with pions 10x10 cm² procurement on going

