



# Crilin - 2022 status report

**MUON Collider Collaboration Meeting** 

Pavia, 19-21 December

D. Paesani on behalf of the Crilin group



# **Beam Induced Background**

#### **BIB flux on ECAL barrel**

- O(300) hits/cm<sup>2</sup>/BX
- mostly photons with <E>=1.7 MeV
- Hits w/ asynchronous timing and displaced origin

#### **BIB** rejection

- BIB hist mostly affect the first centimeters of the calorimeter
- Fast response, good timing and longitudinal segmentation are essential for BIB rejection
- Possibility to subtract the BIB from longitudinal measurements cell-by-cell, depending on <E<sub>BIB</sub>> and sigma<sub>BIB</sub>
- sigmaT < 100 ps  $\rightarrow$  [-250, +250] ps selection window across BX



#### BIB/b-jet separation

#### BIB Edep profile (1 BX) @ BIB at $\sqrt{s}$ = 1.5 TeV

Crilin - Status Report - Dec. 2022



# **Crilin - concept**

#### **Baseline ECAL barrel solution**

- 40 layers  $\rightarrow$  1.9 mm W absorber + silicon pad sensors
- ~64M channels w/ 5x5 mm<sup>2</sup> cell granularity
- 22 X0, 1 λi

#### **Cristal Calorimeter with Longitudinal Information**

- Alternative solution for Muon Collider ECAL barrel
- High granularity, longitudinal segmentation, excellent timing ٠
- Improved radiation resistance
- Modular and flexible architecture with stackable sub-modules allows for design optimization in many Phyiscs scenarios
- 1x1x4 cm<sup>3</sup> PbF2 Cherenkov crystals + dual, UV-extended 10µm SiPM readout
- optimal rejection of beam-induced background
- Supports particle flow algorithms





#### BIB/b-jet separation



#### Crilin vs W-Si





0.2

0.15

0.05



### **R&D** status



#### **Prototype versions**

- Proto-0 (2 crystals + 4 SiPMs)
- Proto-1 (3x3 crystals + 36 SiPMs) x2 layers

#### Front-end electronics

- Design completed
- Boards production complete → see next slides
- QC will start soon

#### **Radiation hardness campaign**

- 10 and 15 um px-size SiPM tests up to 10<sup>14</sup> n-1MeVeq/cm<sup>2</sup> (ENEA-FNG)
- TID tests on PbF2 crystals w/ various wrapping configuration up to 4 Mrad w/ Co-60 photons (ENEA-Calliope) and 10<sup>13</sup> n-1MeV-eq/cm<sup>2</sup> (ENEA-FNG)

#### Test beam campaigns

- Proto-0 H2 2020 (e- and photons up to 120 GeV)
- Proto-0 at CERN H2 2022 → this talk
- LNF-BTF (April) and CERN (August) → upcoming





Proto-0

SiPMs

matrix

Proto-1







Copper exchanger





# **Proto-1** $\rightarrow$ Mechanics



Locking plates





- 350 mW / crystal thermal load
- Additively manufactured micro-channel heat exchanger for liquid coolant circulation





# **Proto-1** $\rightarrow$ **Electronics**

#### SiPM board

- Custom SiPM array board
- 36x 10 μm Hamamatsu SMD SiPMs
- 4 SiPM/crystal (2x 2-series connection)
- 2 independent readout channels / cell
- Integrated SiPM matrix cooling system
- 4x SMD blue LEDs nested between the photosensor packages for SiPM diagnostics

#### FEE/controller board

- 18x readout channels
- Amplification, shaping and individual bias regulation
- Slow control (temperature, bias and current monitors)











### 2022 Beam Test report







### **Setup and beams**





- Beam: e- 120 GeV
- C1, C2  $\rightarrow$  Si strip telescope
- 2x MCPs behind DUT
- S1, S2 scintillator fingers
- Trigger: APC1 x C1\_single\_clu x C2\_single\_clu
- 5 Gsps DRS4 digitiser

#### Crilin Proto-0 setup

- Single crystal
- 15 um <u>px</u> SiPMs
- Electronics gain = 4
- Cristal option 0: PbF2
- Cristal option 1: PWO-UF
- Orientation: front or back side wrt beam direction





Crilin - Status Report - Dec. 2022



# **Tracking and coordinates**





# First idea of E scale

#### Energy scale

- Simulated e- 120 GeV
- Cut on inner fiducial region
- O(5 GeV) most probable deposit
- A first idea of our energy scale







# **Waveform reconstruction**



• CF=12% for both CHs, after optimisation



SiPM T<sub>diff</sub> [ps]

21/12/22





600





Q0 vs Q1



### Q sharing vs Y





6.7

Crilin - Status Report - Dec. 2022



# PbF2 → charge





 $\sqrt{\frac{1}{2}}$ 



# $PbF2 \rightarrow time$

ational

Collal





deltaT:X



deltaT : meanQ





# **PbF2** → time:charge

- For FRONT runs, a clear positional effect of reconstructed time vs beam position is found
- Negligible effect for **BACK** runs
- Cherenkov light propagation is the culprit
- To estimate timing resolution via CHO and CHI timing differences, a correction was tried
- deltaT corrected using charge sharing information for FRONT runs





# **PbF2** $\rightarrow$ time resolution



- Timing resolution as sigma of (TI-T2)/2 distributions
- Timing resolution is better for BACK runs, even after correction

Crilin - Status Report - Dec. 2022



# **Alternative crystal : PWO-UF**



- Alternative crystal choices are being considered
- Critur  $\rightarrow$  PbWO-UF
- Excellent density
- Better LY
- Fast response
- 10<sup>7</sup> rad TID resistant  $\rightarrow$  to be validated



#### **PWO-UF (ultra-fast):**

Dominant emission with  $\tau < 0.7$  ns M. Korzhik et al., NIMA 1034 (2022) 166781



<sup>E</sup>or reference



# **PWO-UF** $\rightarrow$ results

- Same techniques as before used for PWO, similar results
- Timing resolution is worse for PWO, despite almost 2x increase in LO







# Downsampling



- Run PbF<sub>2</sub> back side
- Waves were down-sampled offline by 8 factors: 1, 1/2, ..., 1/8
- Further invest. needed





### Conclusions

#### Lessons learned

- Timing performance of a single Crilin cell is excellent w/ latest FEE design
- PbF2 still outperforms PWO-UF, despite almost halved LY
- Cherenkov light transport plays a key role for charge and timing measurement
- Waveform shape alteration due to convolution of Cherenkov photons transport time distribution and SiPM+FEE response for PbF2 (less severe effect for PWO)
- Depending on particles path inside crystal, some timing offsets appear and need correction
- SiPM series connection also introduces some effect relative to charge sharing and unbalanced illumination
- Specific crystal wrappings or orientations seem to average out these effects
- Using mean-time and charge information seems to average out light transport effects
- We were only testing a 4 X0 crystal, things will change during full shower development

#### Lessons yet to be learned

- Geant4 simulation of light transport will verify current hypotheses
- Test of SiPM matrix with laser to check SiPM response (L/R and series connection)
- Further test beams in different orientations and w/ alternative wrapping/finishing options already planned

#### Next R&D steps

- Proto-1 is under assembly
- Electronics and mechanics have been produced
- 2023 Beam Tests → LNF-BTF (April), CERN-H2 (August)





# **SPARES**







# The Lorenzo proposal

- Add a passive pre-shower to mitigate the BIB effect on the first layer
  - $\rightarrow$  O(cm) of Aluminum or other material to minimize the neutrons generation.

# The all Ecal group proposal

• Add two or more layers of Crilin with different granularity (wider and longer) to achieve about 3 interaction lengths.





# **Introduction and Motivation**



- Muon Colliders (MC) could represent the keystone for accessing the energy frontier of high energy physics
- Great potential, especially in the TeV range:
  - negligible synchrotron radiation ( $m_{\mu}/m_{e}\sim 200$ )  $\rightarrow$  high collision energy as in hadron colliders;
  - no significant beamstrahlung  $\rightarrow$  improved energy resolution for physics measurements.
- Challenging development due to the instable nature of muons (  $\tau_{\mu}$  = 2.2  $\mu s)$ 
  - Decay products of the circulating µ interacting with the machine elements → not so clean environment;
  - 4×10<sup>5</sup> decays/m at 1.5 TeV with 2×10<sup>12</sup> µ/beam→O(10<sup>10</sup>) background reach the interaction region and enter the detector: Beam-Induced Background (BIB).
    - Very soft momenta;
    - Displaced origin w.r.t. the interaction region;
    - Asynchronous time of arrival w.r.t. the bunch crossing;



# **Beam induced background (BIB)**



- BIB represents the main issues for the detectors;
- Very soft momenta;
- Displaced origin w.r.t. the interaction region;
- Asynchronous time of arrival w.r.t. the bunch crossing;





# **BIB in ECAL**



**Energy released in ECAL barrel by uniformly** 

### Timing and longitudinal segmentation play a key role in BIB suppression

- At the ECAL barrel surface the BIB flux is 300 particles/cm<sup>2</sup>, most of them are photons with  $\langle E \rangle = 1.7$  MeV.
- Different energy release for signal and BIB event  $\rightarrow$  possibility to subtract the BIB from longitudinal measurements



Energy released in ECAL barrel by one BIB bunch crossing



# **Muon identification**



- Muons and BIB leave two different signatures in the ECAL barrel:
  - The BIB produces most of the hits in the first layers of the calorimeter while muons produce a constant density of hits after the first calorimeter layers.
  - Since the BIB hits are out-of-time w.r.t. the bunch crossing, a measurement of the hit time performed cell-by-cell can be used to remove most of the BIB.



# **Constant fraction and fit window**



We minimized the time resolution scanning in CF and fit window upper limit. The fit window is given by:  $[T_{peak} - 12 \text{ ns}, T_{peak} + T_{fit max}]$ 



![](_page_26_Picture_4.jpeg)

Crilin: a semi-homogeneous calorimeter for a future Muon Collider I Elisa Di Meco

![](_page_26_Picture_6.jpeg)

# Time resolution studies: first results (1)

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

Constant behaviour meaning that the **waveform stays unchanged in the 50 kHz-5MHz range**. Strong dependence from the sample rate since the **time resolution at 2.5 GS/s is twice the one at 40 GS/s**.

![](_page_28_Picture_0.jpeg)

# **Irradiation sources**

Calliope facility:

- pool-type gamma irradiation;
- 25 <sup>60</sup>Co source rods producing photons with E<sub>y</sub> =1.25 MeV and an activity of 1.97×10<sup>15</sup> Bq.

![](_page_28_Picture_6.jpeg)

| Irradiation Step | Dose in air [krad] |  |  |  |  |
|------------------|--------------------|--|--|--|--|
| Ι                | 30.2               |  |  |  |  |
| II               | 89.88              |  |  |  |  |
| III              | 2082               |  |  |  |  |
| IV               | 4031.8             |  |  |  |  |
| V                | 4435.5             |  |  |  |  |

**Table 1**. Irradiation steps and corresponding total dose absorbed by the crystals

### FNG facility:

- Neutron source based on T(d,n)α fusion reaction;
- 14 MeV neutrons with a flux up to 10<sup>12</sup> neutrons/s in steady state or pulsed mode.

![](_page_28_Picture_14.jpeg)

![](_page_29_Picture_0.jpeg)

# **SiPMs Characterisation**

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

# **SiPMs Characterisation-2**

Extrapolated from I-V curves at 3 different temperatures:

- Currents at different operational voltages.
- Breakdown voltages;

For the expected radiation level the best SiPMs choice are the 10  $\mu$ m one for its minor dark current contribution.

![](_page_30_Figure_6.jpeg)

![](_page_31_Picture_0.jpeg)

# **SiPMs Characterisation-3**

Breakdown Voltage [V]

76

75

74

76.7

\_10

-8

-6

 $V_{br}$ 

h

= a + bT

76.3 ± 0.0457 0.098 ± 0.00708

The percentage variation of the breakdown voltage while the temperature changes of 1°C: for the **15**  $\mu$ m SiPM is **9.8%/°C** and for the **10**  $\mu$ m one is **7.3%/°C**.

15 μm

|                  |                  |                     |                             |                     | 7          |                |                             |    | •                |
|------------------|------------------|---------------------|-----------------------------|---------------------|------------|----------------|-----------------------------|----|------------------|
| Temperature [°C] | $V_{\rm br}$ [V] | $I(V_{br}+4V)$ [mA] | $1(V_{\rm br}+6V)$ [mA]     | $I(V_{br}+8V)$ [mA] |            | 10             | <u> </u>                    |    | 2 0              |
| $-10 \pm 1$      | $75.29 \pm 0.01$ | $12.56\pm0.01$      | $30.45\pm0.01$              | $46.76\pm0.01$      | ]          | -10            | -0 -0                       | -4 | Temperature [°C] |
| $-5\pm1$         | $75.81\pm0.01$   | $14.89\pm0.01$      | $32.12\pm0.01$              | $46.77\pm0.01$      |            |                |                             |    |                  |
| $0\pm 1$         | $76.27\pm0.01$   | $17.38\pm0.01$      | $33.93\pm0.01$              | $47.47\pm0.01$      | 5          |                |                             |    |                  |
|                  | ·                |                     | ·                           |                     | - <u>-</u> | 77.5 $V_{\mu}$ | $a_r = a + bT$              | T  |                  |
|                  |                  |                     |                             |                     | agi        | 77.4 a b       | 77.5 ± 0.0354               | Ļ  |                  |
|                  |                  | 10 <i>µ</i> m       |                             |                     | 'n Volt    | 77.3 b 0       | .0744 ± 0.0055 <sup>-</sup> | 1  |                  |
| Temperature [°C] | $V_{\rm br}$ [V] | $I(V_{br}+4V)$ [mA] | I(V <sub>br</sub> +6V) [mA] | $I(V_{br}+8V)$ [mA] |            | 77.1           |                             |    |                  |
| $-10 \pm 1$      | $76.76 \pm 0.01$ | $1.84\pm0.01$       | $6.82\pm0.01$               | $29.91 \pm 0.01$    | ] ako      | 77             |                             |    |                  |
| $-5\pm1$         | $77.23 \pm 0.01$ | $2.53\pm0.01$       | $9.66\pm0.01$               | $37.51\pm0.01$      | rea        | 70.0           |                             |    |                  |
| $0\pm 1$         | $77.49 \pm 0.01$ | $2.99\pm0.01$       | $11.59\pm0.01$              | $38.48\pm0.01$      |            | /0.9           |                             |    | 10 um            |
| <b>-</b>         |                  |                     | •                           |                     | _          | 76.8           |                             |    | ιυ μm 📑          |

Crilin - Status Report - Dec. 2022 Crilin: a crystal calorimeter with longitudinal information for a future Muon Collider I Elisa Di Meco Temperature [°C]

-2

\_4

15 μm

![](_page_32_Picture_0.jpeg)

# **Electronics – Mezzanine Board**

MEZZANINE BOARD FOR CRILIN EXPERIMENT

The Mezzanine Board for 18 readout channels:

- Pole-zero compensator and high speed noninverting stages;
- 2. 12-bit DACs controlling HV linear regulators for SiPMs biasing.
- 3. 12-bit ADC channels;
- 4. Cortex M4 Processors.

![](_page_32_Figure_7.jpeg)

BLOCK DIAGRAM

Mezzanine board CAD

![](_page_32_Picture_11.jpeg)

### Further thoughts on single-crystal studies

#### We have data for good measurements of time resolution

- CRILIN electronics has extremely good time performance in laboratory, confirmed at test beam
- MCP time reference,  $\sigma_t = 30 \text{ ps}$
- Digitization at 5 GHz
- Good signal shape

# Can obtain light yield measurements with mips and high-energy electrons from this data

# Particularly interested in systematics of light collection with small crystals of high refractive index

- On-line analysis suggests collimation effects disappear with backside illumination
- Time resolution better with backside illumination?
- Need modeling by simulation
- Implications for detector design?